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Abstract

Rotating, differentially heated cylindrical
annulus systems present a simple way of modeling the
basic qualitative phenomena in atmospheric and
oceanic flows. Non-rotating systems are useful in
studying nuclear fuel cooling containers, thermal
storage devices and inert gas cooled cables. Recently,
detailed experimental measurements were obtained by
Q. G. Rayer' fora rotating cylindrical annulus with
walls maintained at different temperatures and blocked
by an adiabatic radial barrier, Rayer’'s experimental
data is compared with the numerical simulation,
which uses a control volume formulation of the Navier
Stokes equations and assumes a Boussinesq fluid. The
discretized equations are solved using a SIMPLE-like
algorithm. Results for low rotation rates show a
vertical flow cell with fluid rising along the hotter
outer wall, traveling radially inward at the top and
sinking at the cooler inner wall. An azimuthal cell is
also present, which circulates in the same sense as Lhe
rotation rate near the bottom and transitions to the
inverse sense near the top. Increasing the rotation rate
causes the flow to become unstable and large eddies to
appear. Results for the pressure field are provided,
verifying earlier hypotheses of radial and azimuthal
geostrophic flow. Predicted heat transfer rates agree
well with experimental results.

Nomenclature

A4, B, C, D, E, F: Nondimensional parameters.
a: Radius of inner annulus wall,

b: Radius of outer annulus wall,

C;: Specific heal capacity of fluid.

g: Gravitational acceleration vector, g = gk
k: Thermal conductivity of fluid.

K: Constant to adjust reference velocity,

L: Height of annulus.
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€,,€q,k: Radial, azimuthal }nd vertical unit vectors
of cylindrical coordinate systerh,

Nu: Nusselt number. '

p: Pressure field.

Pr: Prandt] number.

@ Heal transfer through boundaries,

Ra: Rayleigh number.

(r.9,2): Cylindrical coordinates.

T: Temperatute field.

T,,: Highestof T, and 7},

V: Flud velocity, with components (u,v,w).
a: Thermal expansion coefficienty.

B: Thermometric conductivity.

u: Absolute viscosity of fluid.

v: Kinematic viscosity of fluid.

p: Density of flwd.

1. Taylor number.

APy Pressure jump across radial barrier.
AT: Temperature difference between walls,
ATy: Temperature jump across radial barrier.
©: Rossby number,

€2 Angular velocity of system, Q =w k.
(Ja, ()s: Denote properties at inner and outer walls.
( )o: Denotes reference values.

()": Denotes non-dimensional variable.

Introduction

Considerable attention has been given in the
past to differentially heated, rotating and non-rotating
cylindrical annulus systems. Applications of non-
rotating systems include nuclear reactor cooling,
nuclear fuel cooling containers, thermal storage
systems, solar collectors and inert-gas insulated
electrical cables?. Rotating cylindrical annulus systems
reproduce many of the global qualitative aspects of
natural convection systems encountered in stellar and
planetary cores, ocean currents and atmospheres. In
these cases, the rotation around the system'’s
longitudinal axis mimics the effects of planetary



rotation by introducing Coriolis and centrifugal forces.
Although by no means a model of the atmosphere, the
cylindrical annulus system 1 simple enough to be
modeled, while still being an elementary analogue to
the essential dynamic processes existing in the
atmosphere. Some of the processes that may be
simulated are geostrophic flow, thermal winds,
baroclinic and barotropic instabilities, Hadley cells,
Rossby waves, etc.

The basic phenomena observed in the
unblocked, rotating annulus are the three distinct flow
regimes determined by © and AT. For a typical
AT =~ 10K there is axisymmetric flow at low rotation
rates (@ = 0.4rad/ s), regular waves at moderate
rotation rates (1 < @ < 3.5 rad/s approx.) and
irregular, aperiodic flow for higher values of . Also,
another axisymmetric regime occurs at all values of @
if AT is sufficiently small. The reader is referred to
Read.® Fowlis and Hide,' Williams,’ and Busse®. For
blocked annulus flow, the regimes are different:
regular waves are not observed and instead, large
eddies and irregularities start 10 appear in the flow
above certain values of @ and AT To include the
effects of different fluid properties and geometries, the
flow regimes are better classified according to two
parameters, the thermal Rossby number and the Taylor

number, @ = aglAT /[0 2(b-a)*} and

v=4d0 (b-a)’ /(v*L) respectively, which were first
suggested by Robinson’ and Fowlis and Hide. Flow
regime diagrams for annular systems as a function of
© and < are common in the literature.

In the regimes described above the main
driving force is the buoyancy due to gravity, acting
parallel to the axis of rotation. The resulting flow is
geostrophic in nature and takes the form of a
meridional or Hadley cell, with fluid rising at the hot
outer wall and sinking at the cooler inner wall. This
flow regime is applicable to the study of atmospheric
phenomena such as trade winds, thermal cyclones or
meridional circulation, which is the main form of heat
transport in equatorial regions.

Regarding heat transfer rates, it has been
shown experimentally that for an unblocked annulus,
increasing the rotation rate markedly decreases heat
advection, the net heat transfer through the annulus
and Nu, see for example Bowden and Eden ¥ It was
then hypothesized that blocking the fluid annulus with
a thin radial barrier would enable an azimuthal
temperature and pressure gradient ta form, resulting in
radial geostrophic flow and making the heat advection
independent of ®. Experimental heat transfer results
obtained by Bowden and Eden’ and Rayer' have

confirmed this fact. Radial barriers that do not extend
the full height of the cylinder are useful in
understanding topegraphical obstructions to
atmospheric flow, such as the Antarctic Circumpolar
Current, as suggested by Fultz'® and Rayer.'

Description Of Cylindrical Annulus System Used In
This Stud

Since one of the objectives is to validate the
numerical model by comparison to experimental data,
the system modeled is exactly that employed by Rayer
and is shown in Fig. 1. The fluid-filled annulus (a =
25cm b=8cm, L=14cm)is able 1o rotate about its
longitudinal axis with a constant angular velocity £
The inner and outer heat conducting boundaries are
kept at temperatures T, and T} respectively (with T, <
Ts), and such that the mean of the two lemperatures
remains fixed at 293.15 K for all cases. The upper and
lower boundaries are adiabatic. The annulus is
blocked by a radial adiabatic barner at 8 = 0. The
fluid propertics are shown in Table 1 and correspond
to a water-glycerol solution, as used by Rayer.'

p 1045 Kg -m”

mn 1.81x10° Kg-s'-m’
C, |3.84x107J Kg'K'
o

k

3.03x107" K’
| 0.518 Wwm'K'

Table 1: Fluid properties (water-glycerol mixture).

~_

~Fluid Fitle
Annulus

Figure 1: Schematic of the cylindrical annulus
convection chamber. The top and bottom walls as
well as the radial barrier are adiabatic and Ta <Tb.
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Governing Equations

The following assumptions have been made
in deriving the conservation equations that describe

the system of interest:"'

1. Constant viscosity v, thermal conductivity « and
coefficient of thermal expansion p.
Incompressible flow (V-V =0).

3. Newtonian fluid obeying Fourier’s heat transfer
law.

4. Rotating (non-inertial) reference frame with
angular velocity Q = ok and gravity the only
body force, given as g = - g!:',

The conservation equations as adapted to this
particular problem then become:;

Conservation of Mass
V.-V=0 ()

Conservation of Linear Momentum

-g;(p‘/) +V-(pVV) = mVp—ng;+ pVIV

@)
- Qx (Qxr)+2Qx \4
Conservation of Energy
DT Dp 2
— =T 4kV'T+Q 3
pc, o BT T + + €))]

For low speed flows where heat transfer is the
predominant phenomena, the dissipation @ and the
pressure contribution Dp/ Dt may be assumed very
small compared to the rest of the terms of Eq. 3 and
therefore both terms will be neglected in the analysis.
Neglecting these terms has been the usual practice in
past studies of similar systerms, see for example
White,'* Fultz,'® Robinson'* and ‘
Randiamampianina.'? Conceptually though, these two
terms are important because they represent the two
transfer terms by means of which the system works as
a thermodynamic engine. In the numerical
experiments performed herein, the contribution of the
dissipation term was verified to be negligible.

A linear dependence of density on

lemperature is assumed, providing the equation of
state

p=poll-a(l =Tyl 4

where py is a reference value for density. In the
derivation of the non-dimensionalized equations, it is
assumed that the coefficient of thermal expansion in
Eq. (4) is zero (that is, p” = 1) except when coupled
with the gravitational, centrifugal or Coriolis terms.
These two last assumptions, along wit
incompressibility comprise the Boussinesq
approximation, which is generally assumed valid for
maximum temperature variations of 10 & within the
fluid* Eqs. (1) through (4) farm a system of six
equations with six unknowns; V, p, T, and p.

If a set of non-dimensional variables valid for
the special cases © =0 and T, = T, is desired, the
reference values used in the non-dimensionalization
must be independent of w and (7, — 7, ) to avoid
singularities. This represents an improvement over
the previous models of Mukira ? and Ahmed.'® Thus,
the reference time and velocity were chosen as
Vo= K(ogT.L)'"™ and 1, =LV, where K isa
constant to adjust the velocity and time scales for
different fluid properties, wall temperatures, geometry
and equilibrium times. By incorporating T and o, this
new choice of reference variables is coherent with the
fact that this is mainly temperature-driven flow. For
the present model, setting X = 1/100 yielded a
reference velocity Vo= 2.1 mm/s and a reference time
of 1, =245, comparable in magnitude to the observed
maximum velocities and equilibrium time, about 10
mm/s and 850 s respectively.

With ¥y, fo, po and pg as the reference values,
the non-dimensional variables are

L] V L] 3 L) r L]
Y =—-,x,:£’—, ' =—, a =al,,,
Yy L ly
. - i -T
wek g2 e Toh
Ho Po Ton

1 2.2
5 P_PQS(L“Z)‘EPUOY"

P z
Pu}I’u2

Equations (5) through (7) are the nondimensionalized
conservation laws.

Conservation of Mass

CARA AN (5)



Conservation of Linear Momentum
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Conservation of Energy
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The equation of state takes the non-dimensional form
p=1-a'T" (8)

The non-dimensional numbers appearing in these
equations will be referred to as 4, B, C and D, E and
F.

Discretization Of Conservation Equations

A control volume formulation and a staggered
grid was used for the discretization of the momentum
equation (Eqg. 6) which ensures that momentum is
exactly conserved over the computational domain."”
The momentum fluxes at the cell faces were specified
by using first order upwinding. A central difference
representation for velocity gradients at the cell faces
was employed when the viscous terms in the
momentun equation were discretized.

The generic volume element used to
discretize the r-momentum equation centered on the
grid location (i+%,/,k) is shown in Fig. 2. In the
staggered grid arrangement, the pressure and
temperature are specified at locations (/,/,k), while the
u, v and w components of velocity are specified at the
locations (i+'4,f,k), (i.j+V2,k) and (i,j.k+V3)
respectively. The contral volumes used to discretize

the 8-momentum and the z-momentum equations are
centered on (i,j+%.k) and (i,/,k+4) respectively. Thus
when using a staggered grid, the velocity at a point
(i.j,k) depends on the surrounding pressures one-half a
cell width away, which is a good analogue to reality.
The resulting numencal scheme is explicit and
formally first order accurate.

The governing equations, which are a mixed
set of parabolic and elliptical equations were solved
explicitly using a time marching technique. The
solution algorithm used is the SIMPLE procedure
(Semi-Implicit Method for Pressure Linked Equations)
introduced by Patankar and Spalding'".

The computational grid is shown in Fig. 3.
The number of cells used were 15 in the radial
direction, 31 in the azimuthal and 15 in the axial
direction. However this is reduced to 13, 39 and 13
respectively since the outermost cell in each direction
was not part of the physical domain, but was needed to
implement the boundary conditions. A logarithmic
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Figure 2: Control volume used to discretize the
r-momentum equation. .

Roberts transformation'’ was used to refine the grid in
the proximity of the boundaries. Factors determining
the grid size were the available computing power and
the fact that 10 different cases were to be analyzed.
Upon comparison of the present results with previous
work using a grid with roughly double the number of
gridpoints in each direction (Ahmed'®), it was
concluded that the solutions obtained were grid
independent for this resolution range.

Initial pressure distribution is obtained by
solving the Poisson equation for pressure. The no-slip
boundary condition is applied to all solid surfaces of




the enclosure. The boundary conditions for pressure
are obtained by evalualing the appropriate component
of the conservation of momentum equation for each
boundary. Marching in time continues until the
changes in flow variables are sufficiently small to
ensure that a steady state has been reached. Typically,
this occurred after 850 seconds.

Results And Comparison With Experimental Data

o

0 o No eddies

1.92x10° | 13.75 | No eddies

1.20x10% | 2.201 | No eddies
9.39x10° | 0.281 | No eddies

7.67x10" | 0.034 | No eddies

For a radially blocked annulus, a stable
regime is found for low rotation rates while an
unstable flow regime, characterized by eddies, is found
at the higher values of © and AT. Table 2 below
summarizes the different cases that were modeled in
this study, indicating the flow
k=16
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Figure 3: Computational grid in the (r, 2) and (r, 8)
planes.

regime observed (eddies/no eddies). For conciseness,
detailed results are only included for cases 6, 7 and 10
corresponding to AT =10 £,

’

0 © a No eddjeL
7.67x10° | 8.598 | No eddics
6.90x10° | 0.955 | No eddies

cmqmm&uw-—-'g

1.39x107 | 0.476 | No eddies

7.67x® | 0.086 | Eddies

S

\

Table 2: Summary of cases studied. (Pr=14)

A simplified, qualitative picture of a typical
flow pattern for low rotation rates and low AT is
shown in Figure 4. In this simplified picture, two
circulation cells may be distinguished: a radial,
Hadley-type cell and an azimuthal cell. The basic
radial cell is confined to the vicinity of the walls.
Buoyancy causes the fluid to ascend by the hot outer
wall, at the top of the chamber the fluid travels
radially inwards before descending by the cool inner
wall at a slightly increased velocity.

Prograde
Azimuthal Cell

Radial
Barrier

-

i

Retrograde
Azimuthal Cell

Figure 4: Simplified diagram of computed flow for low
w and AT, showing the radial cell and the azimuthal
cell.




In the model, the azimuthal cell depends on z,
contrary to the experimental results of Rayer.' From
the lower boundary to about %sL the flow in the
azimuthal cell has the opposite sense as the rotation 02,
which will be referred to as retrograde flow. Al
around /3L the prograde flow along the inner
boundary, starts to become important and will
predominate in the upper third of the annulus.
Momentum balance dictates that the retrograde
velocities in the bottom 2/3 of the chamber must be
lower than the prograde velocities in the upper third of
the annulus. The basic flow just described shows
important variations depending on the values of
which are described in subsequent sections.

Velocity Vector Diagram

For w =0, inspection of Fig. A.l in the
Appendix reveals practically zero azimuthal velocity
excepl near the radial barrier, where the associated
boundary layer causes the flow to deviate slightly from
being fully axisymmetric. There is a strong radial
inward flow at the top of the cylinder, from the cool
wall o the hot inner wall. The outward radial flow at
the bottom of the cylinder is not as strong and lakes
place in the region 2 ecm <z <6 cm. The velocity
profiles in the (r, z) plane of Figure A.2 show the
radial cell clearly. As expected, this special case with
no rotation shows practically zero azimuthal velocities.

When rotation is introduced, the Coriolis
acceleration that acts on the fluid particles with non-
zero radial velocity imposes an azimuthal velocity to
the flow, and the system behaves as shown previously
in Fig. 4. For ® =04 rad /s (Fig. A.3) large eddy
formations are observed near the radial boundary at
0 = 330°. However, away from influence of the radial
barrier (Fig. A.4, at 8 = 180°) nearly zero vertical
velocities are found, satisfying the Taylor-Proudman
theorem. Upon increasing the rotation rate to

o =4 rad / 5 the flow becomes unstable and eddies
start appearing in regions far away from the radial
barmer. At this high rotation rate, the Hadley cell
appears severely modified, with large eddies occurring
in its inner domain (Fig. A.5). To further illustrate the
flow, Fig. A.6 was constructed by overlaying
azimuthal velocity contours on the velocity vector plot
for 6 = 180°, opposite the radial barrier. .

Experimental results obtained by Rayer for
w=0.4 rad’s and AT=10 K are shown in Fig. A.7. Note
that the azimuthal cell has a prograde sense of rotation
throughout the annulus and becomes very weak near
the top, where the flow proceeds radially inward [Fig.
A.7]. The predicted velocities in the inner domain of

the annulus are sometimes 2 to 3 times larger than
measured velocities. The model also predicts a strong
prograde flow near the inner cylinder and near the
wall at 8 = 2n, for which there is no experimental
evidence. [t could be argued that measurements were
not taken in the immediate vicinity of the inner
cylinder, but sull there is no hint of this prograde flow
in the adjacent flow layvers. Thus it seems that the
overall prediction of the flow, although logical in
nature, does not match experimental results fully.

Transition to Eddy Flow

[t was previously mentioned thal eddies start
appearing in blocked annulus flows at the higher
values of w and AT. Experimentai resulls by Rayer 1
conclude that the transition to this unstable eddy
regime for this particular system occurs in the interval
1.176 <@ <1372 rad /s for AT =4K and in the
interval 1.196<w <1697 rad/s for AT =10K . The
computer model was tested up to @ =4rad /s for
AT = 4K but no eddies other than those near the
radial barrier were found. For AT =10X, eddies first
occurred somewhere in the interval at
2<w <4 rad/s. Itisanticipated that using a finer
grid may provide a better correlation with
experimental results in predicting the transition to Lthe
eddy regime.

Figure 5: Random streamribbons for AT = 10K ; unstable

flow for @ =4 rad/s.

Figures 5 and 6 show the path of a random fluid

particle using a “streamribbon”. The general unstable

£
1*A




nature of the flow for ® =4 rad/s may be observed in

Fig. = which also shows a large eddy away from the radial

barrier, at 9 = 200 deg . Figure 6 depicts a random

streamribbon for @ = 04 rad/ s ; the flow is stable and no

cddies are present except near the radial barrier.

Temperature Distribution Results

Results are provided in Fig. A.8 for the
isotherms at 8 = 180 ° and O = 358 ° obtained from
the energy equation. Isotherms are approximately
horizontal in the lower third of the annulus. Near the
lop, the highly sloped isotherms reflect the hotter and
faster moving fluid sinking and cooling. Moderate
rotation seems to lessen this effect and the isotherms
appear closer to honzontal with 8778z

JIT

Figure 6: Random streamribbons for AT = 10K,
stable flow for @ =04 rad/s .

approximately constant at mid-radius and 8 = 180°.
At higher rotation rate the irregular sawtooth
lemperature contours corresponding to the eddy
forms. These irregular contours are not only present
in the outer boundaries, but throughout the inner
domain of the fluid as well.

No detailed experimental temperature
profiles have been found to contrast with computed
data, however Rayer' and Bowden and Eden® did
conduct temperature measurements at mid-radius and
mid-depth for 0 <8 < 2x using a circular ring of
thermocouples. The equivalent computed resulls are
shown in Fig. A.9. For zero rotation rate this profile

is symmetrical with respect to 8=180°, as expected,
and thus the temperature is equal on both sides of the
radial barrier. As the rotation rate is increased,
computed results show an azimuthal temperature
gradient developing. Hotter fluid concentrates near
the radial barrier at 8 = 2x, and cooler fluid on the
opposite side (6 = 0). A temperature jump denated by
AT, is established between both sides of the thermally
insulaied radial wall with vaiues given in Table 3. It
is seen that AT, increases with the rotation rate, but
the results obtained by Rayer indicate a AT}, of lower
magnitude. Bowden and Es‘en reported for a similar
System a temperature jumpf AT, = 1.1 K, which is
somewhat closer to the results presented here. Rayer
observed that in his experiment the spacing of the
thermocouples was not fine enough to give good
resolution within the thermal boundary layer of the
radial barrier. Thus, computed results correspond to
locations closer to the barrier than experimental
results and a direct comparison is not possible. Rayer
estimated that truncating computational results to
match the thermocouple locations would give AT,
=044 K forw = 0.4 rad/s and AT = 10 K, but suill
computed results for AT, wauld roughly double the
experimental temperature jumps.

1 0 4 =0

3 0.5 4 0.98 0.16"
) 1.7 n 2.95 0.60
7 0.4 10 |096 0.15
o |4 10 | 451 1.97

Table 3: Temperature drop across the thermally insulated

radial barrier. Experimental results are from Rayer' with
an astensk 1indicating extrapalated values.

Balance of Terms in the Momentum Equation:

A deeper understanding of the flow may be
gained by plotting the relative size of each term in the
non-dimensionalized momentum equation (Eq. 6)
versus r, 6 and z.

For zero angular velocity, the radial and
azimuthal equations present a balance between the
combined pressure and viscous forces and the
advection forces. The viscous term is significant in
the interior of the fluid in this flow regime. The
advection term is also considerable in all three
components of the momentum equation. Thus, models




of the non-retating annulus system that do not include
viscous effects are not expected to be accurate. The
vertical equation of motion (Fig. A.11) shows
hydrostatic balance, with advection terms being of
secondary importance. In the rotating system with

@ =04 rad/ s, both the radial and azimuthal
momentum equations (Fig. A.12) show approximate
geostrophic balance throughout the interior of the
fluid, outside of the boundary layers. A geostrophic
balance implies equilibrium between the Coriolis and
the pressure gradient forces, the resulting steady flow
being parallel to the isobars. Figures A.13 and A.14
show an Ekman boundary layer at the top, bottom and
cylindrical boundaries of the annulus, which involves
equilibrium between the Coriolis, pressure gradient
and viscous forces.

The vertical velocity equation (Fig. A.14)
presents hydrostatic balance between the pressure and
buovancy forces, except in the boundary layer near the
inner cylinder, where the viscous terms is significant.
Thus, the vertical motions in the fluid are almost
exclusively buoyancy driven. For @ = 4 rad’s, the
geostrophic balance is broken by the increased
magnitude of the centrifugal forces in the outer third
of the annulus. At this high rotation rate, the
instabilities present in the flow are reflected in the
oscillations that occur in the vertical and azimuthal
components of the momentum equation, Fig. A.15.

Balance of Terms in the Energy Equation

In order to determine the relative importance
of the viscous dissipation and centrifugal terms of the
energy equation, the magnitude of the different terms
were compared. This values are plotted for mid-radius,
mid-depth and 0 = n in Fig. 7. Analysis of this figure
reveals that the main contributions to the energy
equation come from the advection and the dT/dt terms.
Neither the dissipation term nor the centrifugal term
are of importance, being of the order of 10® and 10
respectively for ©=0.4 rad/s and AT=10 K. However,
the magnitude of these terms needs to be investigated
for higher rotation rates, as it is possible that they may
no longer be negligible.
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Figure 7' Balance of terms in the non-dimensionalized
energy equauon for mid-radius, mid-height and

@ = 180° as a function of r, 8 and z. (0=0.4 rad’s,
AT=10 K).

Pressure Field Results

The azimuthal pressure gradient shown in figiure
A0, is most noticeable near the top of the cylinder but
even there is quite weak (AP, = 0.23 Pa) thus the resulting
radial geostrophic flow is also weak. Although not shown,
a considerable vertical pressure gradient due to gravity of
1851 Pa is also observed.
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Heat Transfer Results

Heal transfer rates for the inner and outer
cylindrical walls were obtained from the summation of
Q = ~dk (8T/0r),ai dA over the corresponding
boundary. A parameter used in comparing heat
transfer rates results is the Nusselt number, defined as
the ratio of the total heat transfer to the conductive
heat transfer, that is,

Nu = (Qadv + and)/ annd = Qﬂ/ and ’ where
Qeond = (27kATLY/[In(b/a)] is casily derived assuming
a solid annulus with same thermal conductivity as the
fluid.

Introducing a fully blocking radial barrier
makes the heat transfer rate through the inner cylinder
(and thus the Nusselt number) largely independent of
. Figure 8 shows experimental and computed Nusselt
numbers for AT = 4K over a range of rotation rates,
Computed results indicate that Nu remains
approximately constant for 0 < o < 0.5 rad/s, then
drops about 20% at around = 1 rad’s, 1o level off
again for > 15 rad/s. According to Rayer however,
the Nusselt Number remains constant for
0<w <4 rad/s and AT =4 K, while for AT=10 ¥ it
increases slightly, about 7% from its initial value, by
the time 4 rad/s is reached.
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Fig. 8: Experimental and computed Nusselt numbers
for AT =4K . Data from Rayer has an error margin
of 0.7%.

It is observed that, as the rotation rate
increases the advective heat transfer decreases (Table
4). This is so because the conductive heat transfer
Ocona is independent of o and the Nusselt number was
found to decrease with increasing rotation rates. Thus
increasing  increases the fraction of heat transfer

carried by conduction and decreases advective heat
transfer, in agreement with Bowden and Eden °

An interesting check on the accuracy of the
heat transfer results is based on the empirical
relationship proposed by Bowden (see Rayer"), valid
for an unblocked annulus. This equation may be
applied to the blocked annulus for w = 0, since the
effect of the radial barrier on the flow is minimal in
this case. The good agreement betwedh these two
results is shown in Table 5.

i Qmm) Qad‘v
o (radis) | Nui | (W) (W)
0 1021 | 1.57 | 14.43
02 1060 1 157 1501
AT=4K | 0.5 1036 | 1.57 | 14.67
1.4 876 | 1.57 | 12.16
4.0 8.12 | 157 | 1099
0 1418 | 3.91 | 51.67
0.4 1344 | 391 | 4876
AT=10K | 1.2 1247 | 3.91 | 4497
1.7 1206 | 3.91 | 43.37
4.0 10.99 | 3.91 | 39.14

Table 4: Computed values of Nusselt number and heat
transfer through inner and outer walls.

Case Computed | Empirical
Nu (Bowden)

w=0 rad/s AT=4K 10.21 10.92 =054

w=0rad/s AT=10K | 14.18 13.74 +0.68

Table 5: Comparison of empirical with computed Nu
foro=0

Conclusions

The numerical model presented here is able to
reveal the fundamental aspects of the flow in a wall
heated, cylindrical annulus, although some
discrepancies with experimental data exist in the
velocity field. First, the magnitude of the velocity field
is over predicted, and second, the sense of rotation of
the lower azimuthal cell is reversed. However, the
model behaves logically: there is a symmetrical
temperature field and no azimuthal flow for © = 0;
there is no velocity at all for AT=0. Also, heat transfer
predictions are comparable with experimental results.
A weak azimuthal pressure gradient and a larger
radial pressure gradient are predicted, as hypothesized
by Bowden and Eden’. Radial and azimuthal



geostrophic flow iake place within the annulus, while
the vertical motion is dominated by buoyancy forces.

Guidelines for further work include solving
implicitly the conservation equations which would
allow larger time steps and reduce computational time.
Previous calculations with finer grids'® showed that
the predicted velocity and temperature fields were
independent of the grid size. However, no
investigations have been carried out to analyze the
influence of mesh size in the prediction of transition to
the eddy regime.

The numerical scheme is formally first order
accurate. A second order accurate scheme could be
implemented, although this would imply large changes
10 the computer code. Implementing the complete
conservation of mass equation in place of V.V =0
could improve results. Furthermore, using a control
volume approach to discretize the energy equation
would ensure global conservation of energy. It was
concluded that for high rotation rates the complete
energy equation should be used, since the pressure
term and the centrifugal term will increase in
magnitude, perhaps to the point where they may no
longer be neglected.
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Appendix:

Figure A.1: Velocity vector plot on (~, 8) plane for o =
0 and AT = 10.
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Figure A.2: Velocity vector plot on (r, z) plane for o =
0 and AT = 10.
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Figure A.5: Velocity vector plot on {r, z) plane for o =
4 rad/s and AT = 10 K.
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Figure A.6: Azimuthal velocity contours (in mnv’s)
for 6 =180° (opposite the radial barrier) overlayed
on velocity vector plots. Dashed contour lined

indicate negative values. (o =1.2 rad/s AT = 10 K)
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Figure A.7: Experimental Velocity measurements on the
(r,z) plane at various values of z for w = 0.4 rad/s and
AT = 10 K, from Rayer ' Arrow in center of annulus
indicate a velocity of 1| mm/s. Experimental errors in the
horizontal velocities is +0.09 mm/s,
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Figure A.13: Azimuthal velocity components at z=1/2
and 6 = 180° as a function of: z.
o = 0.4 rad/s, AT=10 K
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Figure A 14: Vertical velocity components at z=L/2
and 6 = 180° as a function of r.
o =0.4 rad/s, AT=10K
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