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Thankyou Mr Chairman.

My name is Quintin Rayer, and my talk is ftitled
Simulation of axisymmetric source-sink flows in a
rotating fluid annulus.

I am currently working at Nuclear Electric Ltd in
Gloucester.

The purpose of the work I am reporting here was two-
fold.

Validation of the Nuclear Electric Ltd CFD code FEAT
(Finite Element Analysis Toolbox) against rotating fluid

flows and...

...to explore some interesting physics.

From my point of view there was the additional objective
of learning some CFD!

For FEAT validation I looked for a very simple rotating
fluid flow to simulate, hence

- axisymmetric flow, so 2D
- isothermal, so no buoyancy to worry about.
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The rotating fluid annulus consists of fluid trapped
between two co-axial cylinders which rest on a turn-table
so that the axis of rotation coincides with the central axis
of symmetry.

Fluid is pumped radially through the system from a
porous source wall (the inner cylinder) out to the porous
sink wall (the outer cylinder).

So the lid and base are rigid and impermeable, and the
cylindrical side-walls are rigid but porous.

The whole system is then rotated uniformly about its
central axis of symmetry - so the walls, lid and base all
rotate together at the same angular velocity, Q.

I have also indicated cylindrical polar coordinates, with
radius, height and azimuth denoted by (r, ¢, z).

(optional) So from above fluid is pumped into the
annulus through the wall of the inner
cylinder (the source) and exits through the
porous wall of the outer cylinder (the sink).

Here is a section through the annulus in the (r, z)-plane.

The system is of depth d, but as the flow proves to be

symmeirical about a plane at mid-height only the bottom half

need be simulated.

Fluid enters through the inner cylindrical porous source wall
at radius r=a and exits at the sink wall at r=b,

The rotation vector is shown at the centre of the source.
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The simulation also includes the porous walls at source
and sink.

The tank dimensions are: inner radius, a=2.71cm, outer
radius, b=10.83cm, depth, d=4.85cm. These were chosen
to correspond with experimental work.

The rotation rate was 1.00rad/sec and the working fluid
was water, so that the density was 10°’kg/m’ and the
kinematic viscosity 10°m?*/sec’. +0.33 MuAlea
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(optional) The resulting flow, seen from above, feels

the effect of the Coriolis acceleration...
...which turns it to the right, so that in the
fluid interior flow is in the (-ve) azimuthal
direction.
Here is a diagram of the resulting flow in the (r, z)-plane.
In the fluid interior the radial flow feels the effect of the
Coriolis acceleration which turns it to the right (the -ve
azimuthal direction).
This effectively prevents radial motion in the fluid body.
The only way fluid can traverse the chamber is by radial
motion in the Ekman boundary-layers which form on

surfaces perpendicular to the rotation axis.

Thus fluid entering the chamber at the source must move
vertically down (only the bottom half of the chamber is
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shown here) in a source boundary-layer of thickness A,
(NB subscript E for sourcE)...

..to get into the Ekman boundary-layer so it can cross the

annulus.

Finally it must rise in a region of thickness A, (subscript
K for sinK) to redistribute itself over the porous sink

wall.

Please note the subscripts E for source and K for sink.

(optional)

So how do I know about the resulting
flow?

Experimental data give azimuthal flow
profiles and esimates of source and sink
boundary-layer thicknesses.

Theoretical studies give flow profiles and
predications of A, and A,

There has also been a single computational
study (1974) which looked at a limited
number of cases, checked some flow
profiles and did a spot-check on the
relative sizes of Ay and A,.

To a large degree the interest resides in the side-wall
boundary-layers.

Typically a set of simulations consists of setting the
rotation rate and then gradually increasing the total
volume flow rate through the annulus, Q.
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The range of flow rates used were Q=6x107 to 8cm*/sec,
giving inlet flow velocities of 107 - 10" cm/sec.

The relevant dimensionless numbers here are the Rossby
No, comparing inertial and rotational effects, and the
Ekman No comparing viscous and rotational forces.

Ranges were Ro = 2x107 - 4x10™", Ek = 3x10™ - 8x10™.

The Reynolds number was in the range 5x10" - 1x10?
i.e. laminar flow.

The flow breaks down into two regimes:-

Linear regime, Ro << Ek'* << 1, the low flow case,
where A, A equal the Stewartson boundary-layer
thickness, a length-scale x EkY. In this case inertial
effects can be neglected.

Non-linear regime, 1 >> Ro >> Ek'”, the high flow case.
Here the increased flow makes A; thicken to Order Ro,
while, at the sink, Ay is squashed to Order EK'?.Ro™.

‘This also has the effects of skewing the azimuthal flow

profile.

Graphically the results are something like this.

X 1s a dimensionless measure of the non-linearity and of
the flow rate, Q. A Rossby number with a velocity-scale
based on Q is combined with the Stewartson b-layer
thickness made dimensionless by a suitable length-scale.

Z is the source (or sink) b-layer thickness divided by the

e
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Stewartson layer thickness - so in the linear case (small
Q, small X), Z—1,.

X and Z are plotted on log scales.

Below two sketches illustrate how non-linear effects (high
Q) cause the azimuthal flow profile to become skewed
towards the sink.

The W azimuthal flow profile is plotted as the (-ve)
azimuthal velocity component x radius to remove the
effects of curvature. It is plotted against radius across the
annulus.

Here are some laboratory measurements of source-layer
thickness plotted against his theory by Hide (1968),
showing good agreement.

The FEAT simulation.
FEAT stands for Finite-Elements Analysis Toolbox.

It uses quadratic interpoiation and a Newton-Raphson
solver, making it implicit.

A mesh element is illustrated. All parameters apart from
pressure have values recorded on corner and mid-face
nodes (hence quadratic interpolation). The pressure need
only be given on the nodes denoted L, but using a central
node improves the representation of the continuity
equation,

FEAT uses Galerkin Finite-Elements so there is no built-
in upwinding, giving a centred-type scheme.
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The Newton-Raphson solver uses analytic expressions for
the derivatives of the equations, giving faster convergence
than calculating the derivatives numerically.

At each iteration step the matrix equation is solved
directly using Gaussian Elimination.

Here is an illustration of the mesh used.

Only the bottom half of the annulus is simulated, so there
is a symmetry plane at the top, and a rigid impermeable
base at the bottom.

The porous source and sink walls are also included.

The mesh is stretched in the vertical (z) direction to
resolve the Ekman layers, and stretched towards the
source and sink walls to resolve the side-wall layers.

The stretching method keeps a constant ratio between
sucessive mesh element widths.

Here's a set of streamlines from a FEAT simulation.

You can see that the flow travels down in a layer by the
source, moves radially across the annulus in a layer at the
bottom, before rising in another layer region to exit at the
sink.

16 (optional) This is a graph of the radial component of the

fluid velocity x radius plotted against radius
along the symmetry plane (i.e. mid-depth in the
annulus).
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The radial velocity is non-zero in the source
and sink boundary-layer regions, but zero in the
fluid interior, as there all the radial flow is in
the Ekman boundary-layers.

17 This is a graph of the (-ve) azimuthal component of

18

velocity x radius plotted against radius along the
symmetry plane (i.e. mid-depth in the annulus).

Ro + 107, Ek - 10™

The azimuthal velocity increases from zero at the side-
walls to its full value in the fluid interior in regions of
thickness A, and A;. As this is a linear (low Q) case
these layers are of thickness Order Ek'* (Stewartson
layers).

Also shown is the method used to determine the 95%
boundary-layer thicknesses used in layer graphs of results.
The maximum magnitude from the plateau of -Vr is
taken, and 95% of this read off the graph (using linear
interpolation between points on the graph if need be) to
give the side-wall layer thickness. (In practice FEAT
macro coding was set up to do this automatically.)

For the same case this is the corresponding vertical
velocity profile (wxr vs radius). In this case it has to be
taken at a height 1/2-way up the simulated region, 1/4-
way up the annulus (at mid-depth w=0, by symmetry).

It shows fluid descending in the source layers and
ascending in the sink layers.

It also reveals the Ek'”? sub-structure in the Stewartson
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layers, where the vertical velocity is reduced from its
peak value to zero at the side-walls.

19 (optional) As a check that FEAT is correctly reproducing

20

21

22

the Ekman b-layers, the simulation results have
been compared with the theory for the Ekman
spiral, giving excellent agreement.

ft is not too hard to measure the azimuthal velocity
profile in the laboratory. These results compare Hide's
measured data with his theoretical flow profile and FEAT
simulation results.

This is pretty much in the linear (low Q) regime, and
there is excelient agreement between FEAT and the
measurements.

A similar azimuthal flow profile was measured by
Bennetts & Jackson in the non-linear (high Q) regime,
where the profile is considerably skewed over towards the
sink.

The results are compared with FEAT and show excellent
agreement.

As 1 mentioned before FEAT can also be used to derive
the source and sink b-layer thicknesses, which can then
be plotted against Hide's theory.

Here is a graph of X (measure of Q and degree of non-
linearity) and Z (side-wall b-layer thickness).

The line indicates Hide's theory, calculated using an
assumed flow profile, compared with the FEAT layer
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thicknesses (squares).
There is excellent agreement.

You can see that at small X, whereas Hide's results
assymptote to 1, the FEAT sink layer tends to a value
smaller than the FEAT source layer.

This may be a curvature effect, which might be changed
by putting the source on the outer cylinder and and sink
on the inner cylinder.,

The results have been checked by doubling the number of
mesh elements in both directions - which has negligible
effect on the simulation solution. (Slide 23 optional.)

One of the difficulties of comparing a simulation with
experimental data is knowing certain details of the
laboratory flows. For example the precise source inlet
velocity profile as a function of height.

To examine this sensitivity studies were carried out in the
simulation using extremes from a linear inlet flow profile
upto an 1/18th power law (very flat). In most cases a
1/9th power law was used.

The precise flow profile used (even the linear one) had
negligible effect on the results obtained. (Slide 24
optional.)

Other tests related more to the physics of the problem.

Simulations where the depth of the annulus was halved,
or the width reduced to 3/4 of its initial value had very
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little effect on the side-wall layer thicknesses as
expressed by Z and X.

In fact reducing the width had a smali effect - which is
consistent with the idea that the curvature may account
for the differences between the FEAT solution and Hide's
theory at low X. (Slide 25 optional.)

Another test involved changing the rotation rates from the
base case value of 1.0 rad/sec to 1.5 and 0.5 rad/sec.
Again the results were closely in agreement with Hide's
theory. (Slide 26 optional.)

27 (optional)

28 (optional)

Hide's experimental determinations of
source-layer thickness, and their slight
discrepancy from the theoretical values
can be reproduced by making a systematic
variation to the side-wall b-layer thickness
used.

In this case FEAT shows excellent
agreement with the measurements by using
an 82% b-layer thickness.

Hide's theory is compared with FEAT in
tabular form, revealing the slight
discrepancy in Z for small X.

The FEAT results are for a source on the
inner cylinder.

The difference is probably due to the
effects of curvature.



29 Summary.

FEAT has been validated against an isothermal rotating
fluid flow.

There has been good agreement with:-

- azimuthal flow profiles

- Ekman boundary layers (Ekman spiral)

- source and sink boundary layers.
FEAT has shown systematic agreement with the theory
for the source and sink b-layers over the range of Ro and

Ek covered.

The results also support Hide's theory for the side-wall
layer thicknesses, and that it is quite robust to:-

- inlet velocity profile changes
- system geometry (depth and width changes)
- rotation rate

The remaining work which needs to be carried out is:-

- reverse the flow direction (find out what the
effect on Z really is)

- Increase the annulus depth (make it harder for
the fluid to get through)

Thank-you for listening, any questions?



