AUTHORS: Q G RAYER, B G SHERLOCK AND S AHMED *

INTRODUCTION

The differentially heated rotating fluid annulus has contributed to the understanding of geophysical systems such as atmospheres and oceans.

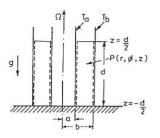
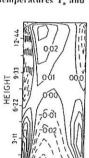
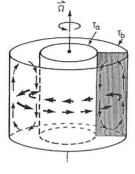


Diagram of fluid annulus (r,ϕ,z) are cylindrical polar coordinates of a point P, fixed in a frame which rotates uniformly with the annulus at Ω rad.sec⁻¹. $\Delta T = T_b - T_a = 4$ or 10° C. a=2.5cm, b=8.0cm, d=14.0cm, $0<\Omega<5$ rad.sec⁻¹.

The two main circulations seen in experiments when the annulus is fully blocked by a thin, thermally insulating, radial barrier.

The side-walls are held at constant temperatures T_a and T_b , with $T_b > T_a$.





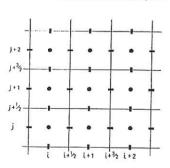
Previous finite-difference computer model results (Ω =1.2 rad.sec⁻¹, Δ T=4°C).

Cross-section in (r,z) plane showing mean azimuthal velocity, ν (cm.sec⁻¹). Solid contours denote $\nu \ge 0$, dashed contours $\nu < 0$.

Note possible spurious eddy motion near r=2.5cm.

2 NEW COMPUTER MODEL

Based on control-volume approach. Discretization equation exactly conserves mass, momentum and energy over calculation domain. Grid stretched to resolve boundary layers.



- p,T defined
- u defined
 v defined

PROCEDURE

Time-level n+1

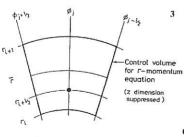
Fluxes at cell faces calculated by unwind approximation.

- Calculate u, v, w from Navier-Stokes momentum equations.
- Find that $\nabla .\underline{u} \neq 0$, so solve for pressure correction

$$\nabla^2 p' = -\frac{1}{\Lambda} \nabla \cdot \mu$$

and velocity correction

$$\underline{u}' = \lambda \nabla p'$$



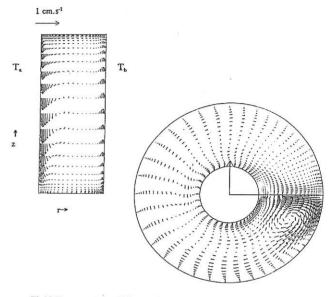
New time-step

Calculate updated fluxes from corrected velocities and pressure

Obtain velocities satisfying both momentum and continuity equations.

3 MODEL RESULTS

Flow patterns



Fluid Temperatures, T(ro, zo; 0)

Azimuthal temperature gradient leads to barrier temperature drop, ΔT_B . Sense of gradient correct, but magnitude of ΔT_B too large.

Ω rad.sec ⁻¹	ΔT _B °C		
	Experiment	Models	
		Finite- Difference	Control- Volume
0.5	0.2	_	0.8
1.2	0.4	1.1	-

CONCLUSIONS

Model correctly calculates:

- Qualitative flow in (r,z) plane
- Azimuthal temperature gradient and correct sense of ΔT_R

Model does not correctly reproduce:

- Qualitative flow in (r,φ) plane
- Magnitude of ΔT_B

Comparison with Finite-Difference Model

- Flow patterns about as good
- Fractional error in ΔT_B about the same
- · No sign of spurious eddies in control-volume model

* Affiliations

Q G Rayer

Nuclear Electric Plc, Berkeley Technology Centre, Berkeley, Gloucestershire, GL13 9PB, UK

B G Sherlock

Department of Electrical Engineering, Parks College of Saint Louis University, 500 Falling Springs Road, Cahokia, Illinois, 62206, USA

S Ahmed

Department of Computer Science, Parks College of Saint Louis University, 500 Falling Springs Road, Cahokia, Illinois, 62206, USA