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Abstract

An original approach has been used to solve the three-dimensional unsteady
incompressible flow in a uniformly rotating frame. The governing equations of
fluid motion are discretized using a control-volume procedure, which ensures the
satisfaction of global conservation laws. Pressure and velocities are calculated
iteratively at each time-level, yielding a semi-implicit scheme. Buoyancy effects
are included by using the Boussinesq approximation. The current form of the
energy equation neglects the presence of internal energy point sources and sinks,
viscous dissipation of energy and work done by the body force. The model is
tested by using it to simulate the three—dimensional incompressible flow in a
fluid annulus rotating with uniform angular velocity, with differential heating
provided by maintaining the side-walls of the corvection chamber at separate
temperatures. Fluid heat transports obtained from the model agree well with
those obtained from experimental measurement.

1 Introduction

Geophysical fluid systems exhibit complex three-dimensional motions due to the
interaction of differential heating and the earth’s rotation. The understanding of
these systems is assisted by the study of flows in a differentially heated rotating
fluid annulus (Figure 1), which shares rotational and thermal forcing with them,
but has simple well-defined boundary conditions [1]. Interest in rotating systerns
with barriers [2] is motivated by systems where zonal flow is obstructed by
topographical features.

This paper presents a rigorous approach towards the numerical simulation
of thermally driven three—dimensional flows. The incompressible Navier-Stokes
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Figure 1 Diagram of fluid annulus. (r,¢,z) are cylindrical polar cordinates of a
general point P, fixed in a frame rotating uniformly with the annulus at Q rad.
sec™!. a=2.5cm, b=8.0cm, d=14cm.

equations in a rotating frame are solved, with buoyancy represented by the
Boussinesq approximation. These governing equations are discretized using the
control-volume approach [3, 4], thereby maintaining the statement of global
conservation which is their essence. Preliminary results from this model have
been presented [5], but the current paper extends them and gives a more detailed
description of the model.

Previous computer models of the rotating fluid annulus have used grid-point
finite—difference formulations which conserve mass, momentum and energy only
in the limit as the simulation mesh becomes infinitely fine. They have been
applied both to unobstructed flows [6, 7, 8] and to flows where the annulus is fully
blocked by a thermally insulating radial barrier [2, 9]. The finite-difference model
has so far failed to simulate several aspects of the flow in the annulus blocked
by a radial barrier. Rayer [2] noticed defects in the velocity fields that may be
similar to those mentioned by White [8]. Also the model did not calculate the
correct value for the temperature drop observed across the thermally insulating
barrier during experimental work. This may be due to an insufficiency of grid
points adjacent to the barrier to adequately represent any boundary layer that
may be present.

2 Computer Model

'The new model uses the control-volume approach [3, 4]. The discretisation equa-
tion obtained by this method ensures that momentum and energy are exactly
conserved over the computational domain. The physical variables of the system
are expressed in non-dimensional terms for three-dimensional incompressible
flow in a uniformly rotating frame. The reference velocity and characteristic
time used for the non—dimensionalisation are
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where |G| = w and £ is a characteristic length-scale. Then the non-dimensional
variables become
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The parameters listed above are: position vector, £ = (r, ¢, 2); fluid veclcity,
@* = (u*,v*, w*); reference fluid velocity, & = (U, V, W); time, t; fluid viscosity,
w; fluid density, p; thermal conductivity, k; temperature, T; mean fluid temper-
ature, 7 ; pressure, p; thermal expansion coeflicient, o and gravity, g. T} is the
temperature of the hot side-wall. With these definitions the differential operators

become,
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Thus using the Boussinesq approximation, the momentum conservation equa-
tions for three—dimensional incompressible baroclinic flow in a rotating frame
can be written in non—dimensional form as
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where Gr is the Grashoff number
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Equation (2.1) can be differenced in a control-volume manner with respect to
the staggered grid and control-volume shown in Figure 2 to yield the discretised
momentum conservation law, the r—component of which is
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Figure 2 (a) Staggered grid used in control volume formulation. (b) Typical
control-volume in (r,¢) plane.
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The fluxes at each cell face are calculated by upwind approximation. Dis-
cretization equations for the other flow variables are obtained similarly. The
numerical scheme proceeds by first calculating v, v and w at the n + 1 time—
level explicitly from the momentum equations. However, this solution will not in
general satisfy the continuity equation. Following the approach of [3] a Poisson
equation for pressure correction is solved,

1
Vi = _ZV'E’

where A is a fictitious time-interval, followed by a velocity correction
= AVYp.

The corrected velocities and pressures are used to construct new fluxes at the
cell faces. Upon iteration, this process yields velocities at the n + 1 time-level
which satisfy both the momentum and mass continuity equations. Because of the
iterative update of the fluxes, the scheme is semi-implicit. The newly calculated

4



velocity field is then used to solve the energy equation for the fluid temperature
at time-level n 4+ 1 in an explicit manner. Marching in time continues until the
changes in the flow variables are sufficiently small to indicate that the procedure
has converged. This convergence indicates that the flow has reached a steady-
state, although the scheme, as described, is also capable of modelling time—
varying flows.

3 Results

Representative flow fields (Figure 3) have been simulated for an annulus blocked
by a radial barrier, using T3 — T, = AT = 4°C and Q = 0.5rad.sec™!. The
plots are in the form of fluid velocity vectors plotted in the (r, z)—plane opposite
the barrier (Figure 3a) and in the (r, ¢)-plane at mid-depth in the fluid (Figure
3b). Figure 3(a) shows fluid rising by the hot outer cylinder and sinking by the
cold inner cylinder, accompanied by radial inflow near the top of the convection
chamber and radial outflow at the bottom. This aspect of the simulated flow is
consistent with experimental observations, although the circulations in a hori-
zontal plane (Figure 3b) differ somewhat from [2]. The results also show that
vertical motions take place mainly in the side—wall boundary-layers, as would be
expected by consideration of the Taylor-Proudman theorem [10], which predicts
that vertical velocities should be inhibited in the body of the fluid.

Fluid heat transfer (Table 1) and temperature data (Table 2) have been cal-
culated using Ty — T, = AT = 10°C and Q = 0.4rad.sec™!,and Ty — T, = AT =
4°C and Q2 = 0.5rad.sec™!. Table 1 shows values of the fluid heat transfer in
terms of the Nusselt number

_ Hln(b/a)
T 27k ATd’

where H is the total fluid heat transport calculated in the model as the heat
conduction through the inner cylinder at r = a. The three columns give Nu
from the model calculations; experimental measurements for nearly equivalent
cases (AT = 9.98°C, Q = 0.402rad.sec™! and AT = 4.03°C and Q = 0.401,
0.601rad.sec™!) [2] and from a correlation for Nu [11] derived for a stationary

annulus,Nu = (0.203 + 0.0IO)Ra% where Ra is the Rayleigh number,

Nu

_ gaAT(b—a)®
- VK ’

Ra

and v and & are the kinematic viscosity and thermometric conductivity for the
fluid. The results show excellent agreement between the model and experimental
measurements, and illustrate the result [12] that the barrier makes the fluid heat
transport largely independent of 2.
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Figure 3 Fluid velocity vector plots, AT = 4°C, Q = 0.5 rad. sec™!, the scale

arrow denotes a velocity of 1 em. sec™ . (a) Flow in the (r,z) plane opposite the

radial barrier. (b) Flow in the (r,4) plane at mid-depth in the annular chamber.

Table 1: Comparison of model and measurements of fluid heat transport.

AT Q Nu Nu Nu(Q =0)
°C | rad.sec™! | model expt [2]  corrin [iI]
10 0.4 13.3 139+£0.1 13.6+0.7

0.5 10.3 11.0+£0.2 10.8+0.5

Table 2 shows the fluid temperature drop observed across the sides of the
thermally insluating radial barrier at mid-height and mid-radius, ATjp. ATg
serves as a measure of the azimuthal temperature gradient in the fluid, and has
been shown to be linked to the radial overturning cell observed in the blocked
annulus [2]. The calculated values from the model have been compared with
measurements [2]. It can be seen that although the calculated values of fluid
heat transport agree quite closely with measurements, there is a considerable
discrepancy between the calculated and measured values of ATg. This indicates
that the model is failing to properly reproduce the azimuthal temperature field
in the annulus.



Table 2: Comparison of model and measurements of barrier temperature drop.
AT Q ATg ATp
°C' | rad.sec™! | model ezpt [2]

10 0.4 2.0 0.15 £ 0.01
0.5 0.7 0.17 £ 0.01
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