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1 Title slide

2 Iam currently based at Nuclear Electric’s Berkeley
Technology Centre in Gloucestershire.

This talk is based on work from my D Phil thesis,
when working at Robert Hooke Institute.

The Robert Hooke Institute was involved in
research in geophysical fluid dynamics.

3 Talk concerns computational investigations that
arose as a result of experiments carried out with a
differentially heated rotating fluid annulus.

I shall start by giving a description of the annulus,
and of the barrier that was used,

also some background, which includes a brief
summary of the flows seen in an annulus without a
barrier.

This helps explain interest in the effect of the
barrier on the flows, including the effect it has on
the fluid heat transport.

A summary of the experimental results is used to
show the effect the barrier has on the flow.

The computer model is used to investigate an
aspect of the flow observed in the experiments.



The annulus consists of two concentric cylinders
which are used to form an annular convection
chamber. |

Fluid is trapped between an insulating lid and base.
The outer wall is heated to a constant temperature
T, and the inner wall cooled to a constant
temperature T,.

The whole thing is then placed on a turntable, so
that the central axis of symmetry coincides with the
axis of rotation, and is rotated with uniform
angular velocity.

Dimensions Inner radius 2.5 cm

Outer radius 8.0 cm
Depth 14.0 cm

Experimental parameters
T,-T,=AT=4 or 10 °C
=0 to S rad/sec

This is not Taylor-Couette flow; the two cylinders,
lid and base all rotate at the same rate; they are
physically connected.

The investigation discussed here includes a thin,
thermally insulating radial barrier, illustrated in the
lower part of the slide.



To help understand interest in the effect of the
barrier on the flow, I shall outline the observed
flows when no barrier is present.

In this case the flow generally proceeds around the
annulus. At low rotation rates the flow is axially
symmetric, with regular waves forming at higher
rotation rates.

The wave number increases as the rotation rate
increases, until the waves become irregular at the
largest rotation rates.

Since the flow is largely azimuthal it is natural to
ask what happens if we block it?

This slide shows experimental results of the fluid

heat transport (Nusselt Number) against rotation
rate ({0).

N-= Total heat transport
Heat conduction

The solid line shows results for an unblocked
annulus. Heat transport decreases rapidly (ocQ3/?)
at first, and then picks up (to ~75-80% of the non-
rotating value) when the regular waves start, before
gradually trailing off at higher (.

PTO



It 1s clear that the regular waves carry heat,
because if you suppress them, then you get the
lower line, where the heat transport just continues
to diminish.

Putting in a radial barrier has the effect of keeping
the heat transport very close to its non-rotating
value over all Q.

This prompts the question: how does the fluid do
this? So we want to understand what causes the
flows in the annulus with a barrier.

This slide summarizes the flows seen in the
experiments with a barrier. It is a simplification.

Basically there are two main circulations: a radial
overturning cell, and a horizontal circulation.

This talk is concerned with finding the mechanism
for the horizontal -circulation. Experimental
investigations have shown the processes responsible
for the radial overturning cell.

So what causes the horizontal circulation?



Start by looking at the equations of motion. Use
cylindrical polar coordinates, with position vector
r and components (r,¢,z); velocity u, components
(u,v,w) and rotation vector 2, which is (0,0,%).

The motion of a fluid particle is described by the
Navier-Stokes equation, in a rotating frame.

Buoyancy effects are included by wusing the
Boussinesq approximation, where horizontal density
variations are only considered when coupled with

gravity.

Terms are:

Acceleration relative to a fixed point

Inertial acceleration, which together
with the first term, makes up the
acceleration of a fluid particle
following the motion of the fluid

Coriolis acceleration
Pressure gradient acceleration
Potential of external forces, V&,
which includes gravity, the centrifugal
acceleration, and potentially any other
conservative forces acting on the fluid
Buoyancy |
PTO
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Viscous term, based on a Newtonian
Fluid, i.e. constant viscosity ».

Mass continuity equation, assumes an
incompressible fluid.

Also have the equation of heat transfer, can see
terms for heat advection and conduction.

In the equation of state density is linearly
dependent on temperature, using the coefficient of
thermal expansion, o.

It is possible to scale these equations to show
which of the terms are significant.

Put in order of magnitude values for typical length
scales, fluid velocities etc.

When you do this, for the interior of the fluid, you
are left with the Coriolis term, pressure gradient
term, and terms with gravity in them.

Can split the terms into their components and
cross-differentiate to eliminate the pressure.

This gives the components of the so-called
“Thermal Wind’ equation, in which horizontal
 temperature gradients are related to a vertical shear
in velocity. This equation also applies to
atmospheric motions.



In the derivation of the Thermal Wind equation, it
is usual to exclude the centrifugal acceleration, but
it can be included.

Thus the azimuthal component of the velocity, v
making up the horizontal circulation seen in the
experiments (with a barrier) is likely to be linked
to either radial temperature gradients (0T/0r) or
else to centrifugal effects.

Considering that a radial temperature difference
was applied to the convection chamber, you might
expect the radial temperature gradient in the fluid
to be quite big.

But experimental measurements show that it is not.

The values of dT/dr with a barrier are much less
than those seen in an unblocked annulus.

The slide shows isotherms for flow in an annulus
with a barrier, from two sets of measurements.

In the more recent results (shown in the lower part
of the slide), there are large values of dT/dr in the
boundary layers, but the Thermal Wind equation
doesn’t apply there anyway.

So radial temperature gradients don’t seem a very

promising source for the horizontal circulation at
this stage. What about the centrifugal force?

+



10 There was some evidence to support the idea that
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the centrifugal force might be important.

Condie & Griffiths had done some experiments
with a rotating rectangular tank (2Zm long),
differentially heated along its narrower sides.

They observed a circulation in the horizontal,
which formed a figure of eight.

They suspected that the centre of this circulation
occurred at the point where the parabolic surface of
constant potential in the fluid was parallel to the
base of the tank. (The constant potential surface
being parabolic because of the centrifugal forces).

So they sloped the base of the tank, and found that
the centre of the circulation moved to the new
location where the surface of constant potential was
parallel to the sloping base.

This showed that their horizontal circulation was
caused by centrifugal forces.

With a computer model you can do something
that’s impossible in an experiment. Namely have
rotation without the centrifugal force. i.e. modify
the equations so that the centrifugal term is
removed, but the Coriolis acceleration is kept.
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So one can do two computer simulations, one with
the centrifugal force, and one without, to see what
difference it makes.

First, a few details about the model are on the
slide.

It had been used for some time at the UK Met.
Office for modelling unblocked flows.

More recently it was modified to include the
barrier, but not much work had been done with it.

It seemed a good opportunity to try out my idea.

Slide of sets of model results. Shows a cross-
section in the (r,z) plane.

Plotted are contours of the mean azimuthal
component of velocity, v.

Solid contours : v=0
Dashed contours: v<(

(a) Full equations
(b) Centrifugal force term omitted

Hence centrifugal force makes no appreciable
difference.
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So is the horizontal circulation caused by radial
temperature gradients then?

Test this by running two simulations, identical
except that the sense of the externally applied
temperature difference has been reversed.

Same sort of plot as before.

(@) T,-T,=+4°C
(b) T,-T,=-4°C

One can see that the sense of the mean azimuthal
component of the velocity, v has very neatly
reversed.

The two sets of results are not a mirror image of
one another because of the cylindrical geometry of
the annulus.

So the horizontal circulation must be caused by
radial temperature gradients in the fluid.

14 Summary of results.
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