Chapter 5

Computer model results.

In this chapter a numerical simulation of the fluid annulus has been used to test
certain ideas concerning the (-circulation. The model is described in §5.1 and the
results compared with experimental measurements in §5.2. In §5.3 a simulation
is used to check the validity of the scaling analysis of §1.2.2. The (-circulation is
investigated in §5.4. One mechanism is proposed in §5.4.1 and tested in §5.4.2.
It is found that the centrifugal force appears not to play a part in the formation
of the (-circulation. A further mechanism is suggested and tested in §5.4.3. The
conclusions of the investigations are given in §5.5.

5.1 The computer model.

The numerical model of the annulus used was that of James et ol (1981) and
Hignett et ol (1985). Ii is a grid—point finite difference formulation based on the
(non-hydrostatic) Navier-Stokes equations for incompressible baroclinic flow in
a Boussinesq fluid. The standard resolution of the model is 16 (vertical) x 16
(radial) X 64 (azimuthal) points; the grid is streiched in the (r, z)-plane to resolve
boundary layers. The performance of the model in comparison with experimental
results, applied to unblocked annulus flows, is discussed in White (1988). The
dynamical equations used by the model are given in Hignett et al (1985) where
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the centrifugal term discussed below is shown explicitly (see Table 5.2 below).
The numerical and experimental investigations used identical geometries.

The model was modified to include a fully blocking thermally insulating radial
barrier by A.A.White (private communication). The boundary conditions on the
sides of the barrier amount to a ‘no-slip’ condition (i.e. u,v,w = 0 at the sides
of the barrier), however the implementation of the boundary conditions at the
barrier was complicated by the use of two sets of grid points, each displaced
relative to the other. The barrier was placed on one of the grids, and then an
extra set of ‘fictitious’ points introduced on each side of the barrier which formed
part of the second grid. This meant that the boundary conditions could be applied
to the quantities calculated on the second grid at the location of the barrier by
interpolating between the grid points. In effect the model sees two barriers, one
at each of ¢ = £7. For the second grid, with azimuthal spacing A¢, the grid
points nearest the barrier were at ¢ = —7 + A¢/2 and ¢ = 7w + A¢/2, so that
boundary conditions for the barrier could be applied between those points.

P.L.Read (private communication) has raised certain doubts as to whether the
diagnostics routines have correctly interpreted the model data near the barrier,
because of the “fictitious’ points the model used (see above). However he believes
that the velocity and temperature fields should be unaffected by this problem.

5.2 Comparison of model results with experi-
mental data.

This thesis does not attempt to verify the numerical model in any detail, however
it seems advisable to compare the model results with experimental measurements
taken using the similar system described in chapter 3.

Figure 5.1 shows velocity results from the numerical simulation displayed in
a similar format to that of the experimental results.
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FIGURE 5.1: Computer model simulation of flow in a fully blocked annulus of
constant depth, d = 140 mm. Horizontal velocity results in an (r, ¢)-plane. The
solid line in the three o’clock position indicates the location of the barrier. The
central arrow in each case represents a velocity of 1 mm.sec™ or 1 em.sec™ as
indicated. The heights of the (r, ¢) cross-section above the base of the annulus are
also given in the centre of each diagram. Results from run 751, Q = 1.2 rad.sec™,
AT =4 K. Radial inflow can be seen near the top (a), and radial outflow near
the bottom (f). Prograde flow can be seen by the outer wall in (d)-(f). Some
distance from the inner wall retrograde flow can be seen in (d)-(f). The strong
flow close to the inner cylinder in all the plots is the spurious motion mentioned
in the main text. 138

The horizontal velocity data is shown, where possible, at similar heights to
the measurements made in the experiments. Figure 5.2 shows experimental ve-
locity measurements at values of 0 and AT close to those of Figure 5.1. The
experimental velocity measurements were not reprojected onto a regular grid, in
order to avoid the possible errors associaied with the least squares fitting routine,
which are described in §2.2.5.

Bearing in mind the differences in heights that the horizontal velocity data are
shown at, the velocities shown in Figures 5.1 and 5.2 should be almost identical.
In general terms both figures show radial inflow near the top of the annulus and
radial outflow near the bottom. Also at mid to lower regions there is prograde
flow by the outer wall, and the magnitudes of the fluid velocities appear to be
broadly similar. However close inspection reveals differences. The most obvious
of these is the strong flow which appears by the inner cylinder in Figure 5.1.
While it could be argued that there are few indications of the velocity close to
the inner cylinder in Figure 5.2, in general, the numerical and experimental results
appear to disagree in this region, particularly in the lower parts of the annulus.
It is just possible that Figures 5.1(b) and 5.2(b) agree, but in the simulation
resulis there is prograde motion by the inner cylinder in (d) and (e), while the
experimental results show retrograde motion in () and (d), over a broadly similar
range of heights. It seems likely that the numerical simulation is having difficulty
resolving the fluid motions in the region next to the inner cylinder.

Figure 5.3 shows velocity and temperature results for the same run as Figure
5.1, The mean radial velocity results in Figure 5.3 (a) appear to be quite similar
to those in Figure 3.5. Also, apart from the spurious motions by the inner cylin-
der, Figure 5.3 (b) seems similar to Figure 3.6. It is worth noting that Figures 5.3
(a) and (b) agree quite well with the conducting barrier results, Figures 4.5 and

4.6, considering the similarity in the results with the insulating and conducting

139



FIGURE 5.2: Horizontal velocity field data taken by VVAS, from the full
radial barrier experiments for the system with constant depth, d = 140 mm (see
chapter 3). The results have not been reprojected onto a regular grid to avoid any
possible errors that might be caused by the least squares fitting routine. Instead
each plot is a superposition of five scans at that level. The heights above the
base of the annulus are: (a) 124mm, (b) 97mm, (c) 70mm, (d)43mm, and (e)
16mm. Data from run 216, Q = 1.176 rad.sec™!, AT = 4.06 K. These results
were chosen to allow comparison with the computer simulation results.
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FIGURE 5.3: Computer model results from run 751, @ = 1.2 rad.sec™),
AT = 4 K. Cross-sections in the (r,z) plane of (a) mean radial velocity, u
in em.sec™, (b) mean aszimuthal velocity, v in cm.sec™, and (c) mean fluid
temperature. In (a) and {b) solid contours denote positive velocity, and dashed
contours negative velocity.

barriers this is perhaps not surprsing.

Spurious motions were also observed near the inner cylinder by White (1988),
who found that for an unblocked non-rotating annulus there were spurious time-
dependent eddy motions by the inner cylinder with (r, z) grids of certain res-
olutions. Using unstretched N x N grids, spurious motions were observed for
N =40, but not for N = 24, 32,48, 56, or 64. A 64 x 64 grid was required to give
heat transport measurements which fell within the error bars of the experimen-
tal observations. He concluded that spurious eddies were seen at intermediate
resolutions.

These spurious motions were only seen in the unblocked annulus when {1 = 0,
while Figure 5.1 seems to show spurious motions in the simulation of the fully

blocked annulus flow at @ = 1.2 rad.sec™. However the flows observed in the
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FIGURE 5.4: Computer model results from run 751, Q = 1.2 rad.sec™", and
AT = 4 K. Fluid temperature at » = 7 and z = 0, plotted against . The
plot is chosen to allow comparison with the thermocouple ring measurements of
the experiments described in chapter 3 (the full insulating barrier system). The
markings along the horizontal axis have the same spacing as the thermocouples
in the experiments. These results give ATz = 1.11°C.
blocked annulus when Q # 0 do have several features in common with non-
rotating unblocked annulus flows, namely; a strong radial overturning cell (the
n-circulation in the full barrier experiments) and a similar (r,z) temperature
field. Figure 5.5 shows the spurious eddy motions observed by White (1988)
in simulations of unblocked annulus flows. Figure 5.5(c) shows the results that
White obtained in a simulation of unblocked flow in an annulus at Q = 0, at
AT =4 K, where the temperature and velocity fields seem fairly similar to those
seen at 0 = 1.2 rad.sec™ with a full radial barrier, shown in Figure 5.9 (c).
Thus it seems possible that the spurious motions seen in the fully blocked

simulations at = 1.2 rad.sec™* and AT = 4 K, arise for the same reasons as
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FIGURE 5.5: Cross-sections in the (r, z) plane, showing streamlines and tem-
perature fields obtained in numerical simulations of axisymmetric annulus flow.
(a) Instantaneous sireamlines from an integration at Q = 0 which developed
spurious eddy motion in and near the inner cylinder; 32 x 32 streched grid.
(b) Steady-state streamlines from a well-behaved integration at Q = 0; 64 x
64 unstretched grid. (In both (a) and (b) streamline contours are plotted, and
the arrows indicate the direction of flow; contour interval is the same in both
cases.) (c) Steady-state temperature field corresponding to (b). (d) Steady-state
temperature field obtained with a 32 x 32 streiched grid (as for (2)) but at
Q=05 rad.sec™. In all cases the inner and outer cylinder temperatures are 17
and 21°C. Taken from White (1988). Notice that the temperature field in Figure
5.3 is far more similar to (c) than (d).

those seen by White (1938), namely from the inadequate resolution of the grid
points. .

Comparing Figures 5.1 and 5.2, on the whole the model does not reproduce
the (-circulation particularly well. There is some evidence of a { type circulation,
but it occurs at a rather lower level in the model than in the experiment, and
is quite weak. Since there is some sort of (-circulation it is possible to use the
model as a test for its mechanism, but the problems mentioned above, mean that
any test concerning the (-circulation may not be particularly decisive.

Figure 5.4 shows a simulated thermocouple ring plot, such as those given in

Figure 8.9. While T'(F, z = 0; ¢) is qualitatively similar to the experimental
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results, calculation of AT for the computer simulation gives a value of ATy =
1.11°C at @ = 1.2 rad.sec™ and AT = 4 K. In Table 3.2, experimental run 5C
is the nearest equivalent (2 = 1.205 rad.sec™ and AT = 4.00 K), giving a result
of AT = 0.41 K. Thus the model does not agree with the experimental resulis
in this respect. The fluid heat transport in the simulation gave a Nusselt number
of 11.2, which agrees with the experimentally measured value of 11.08 £ 0.16.

The rather modest agreement between the numerical and experimental results
casts some doubt on the usefulness of the model. However there is sufficent
agreement to make the model a useful (if not conclusive) testing ground for certain

ideas concerning the (-circulation.

5.3 Using the model to scale the dynamical
equations.

The scaling arguments applied to the equations of motion in §1.2.2 can be re-
fined by using the numerical model to obtain the sizes of the terms in each of the
components of the equation of motion as a function of position in the annulus.
Figures 5.6 - 5.8 show the sizes of each of the terms in the radial, azimuthal and
vertical equations of motion against radius, azimuth and height. Providing the
model is able to simulate the flow with suitable accuracy this approach should
allow the significant terms in the boundary layers to be seen, as well as in the
body of the fluid. This provides a check on the conclusions of §1.2.2 that az-
imuthal geostrophic balance and the hydrostatic equation are accurate to a good
approximation.

Figure 5.6 shows sizes of the terms for the components of the equation of
motion against radius. In the body of the fluid radial and azimuthal geostrophic
balance can be seen to apply, and hydrostatic balance in the vertical. (a) shows
that the centrifugal force term is the next most significant term after the Coriolis

144

Size of term.

" Size of tem.
1 S advestive
1 o pressare
] - huauey
4 4 viseous
1 Bua
W = ]
L
E
'u T | T J T ‘ T | T i
3 13 454 55 (L] (A
radius (ca)
(c)  Vertical Equation

|
441 7 T T T 1 T T U

145

Siae of term.

15 13 i3 3H 654 154
ndins (cm)
(b)  Azimuthal Equation

FIGURE 5.6: Plots showing the size
of the terms (in cm.sec™?) against ra-
dius for the components of the equation
of motion for the numerical model Run
751, at mid-height, opposite the barrier.
The terms are defined in Table 5.2. (a)
The radial equation of motion shows ra-
dial geostrophic balance, the centrifu-
gal term is the next largest. (b) The
azimuthal equation shows geostrophic
balance in the interior, while the vis-
cous term is also important in the side
wall boundary layers. (c) The verti-
cal equation shows hydrostatic balance,
with viscosity again important in the
side wall boundary layers.
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FIGURE 5.7: Plots showing the size
of the terms (in cm.sec™?) against az-
imuth for the components of the equa-
tion of motion for the numerical model
Run 751 at mid-height and mid-radius.
The terms are defined in Table 5.2. (a)
The radial equation of motion shows ra-
dial geostrophic balance, the centrifu-
gal term is the next largest. (b) The
azimuthal equation shows geostrophic
balance in the interior, it is possible
that there may be a boundary layer on
the ¢ = « side of the barrier, but this
is not matched on the other side of the
barrier. (c) The vertical equation shows
hydrostatic balance.
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FIGURE 5.8: Plois showng the
size of the terms (in cm.sec™) against
height for the components of the equa-
tion of motion for the numerical model
Run 751, at mid-radius, opposite the
barrier. The terms are defined in Ta-
ble 5.2 (a) The radial equation of
motion shows radial geostrophic bal-
ance. (b) The azimuthal equation
shows geostrophic balance in the inte-
tior, while the viscous term is also im-
portant in the Ekman boundary layers.
(c) The vertical equation shows hydro-
static balance.



Name of term | Description of term

advective #4.Vu, 2.V, or .Vw

pressure %V’p, where p is the deviation from
the reference function:

po = pg(d - 2) + 370,

see Hignett et ol. (1985).

Coriolis 20 x i
metric u?/r or uv/fr
centrifugal
QT - T)
viscous more complex than vV,
see Hignett et al (1985).
acen. difot
buoyancy
go(T-T)

TABLE 5.2: Definition of terms used in Figures 5.6 to 5.8.

and pressure gradient terms, this suggests that the cenirifugal force could be
important in determining the flow. Given the spurious motions mentioned in §5.2
the values at small r should not be relied upon, however (b) shows that in the
(outer) side wall boundary layer there is a balance between the advective, pressure
gradient, Coriolis and viscous terms. (c) shows a thinner side wall boundary layer
with a balance between the pressure gradient, buoyancy and viscous terms.

The sizes of the terms of the components of the equation of motion are shown
plotted against ¢ in Figure 5.7. (a) and (b) show radial and azimuthal geostrophic
balance, while the centrifugal term is the next largest term in (a) once again. (c)
shows hydrostatic balance. On the whole there is little evidence of boundary
layers by the sides of the barrier, apart from possibly in Figure 5.7 (5). This
tends to support the apparently succesful omission of such a boundary layer in
the theory of chapter 3. Since the model used an insulating barrier the result has
10 bearing on the conducting barrier case discussed in chapter 4.

Figure 5.8 shows the components of the equation of motion plotted against

height. (a) and (b) again show geostrophic balance to a good degree of accuracy,
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and (c) hydrostatic balance. (b) shows an Ekman boundary layer at the top and
bottom of the annulus which involves a balance between the pressure gradient,
Coriolis and viscous terms.

Thus the model suggests that at @ = 1.2 rad.sec™, AT = 4 K azimuthal
geostrophic balance holds to a good order of accuracy, and that probably the
boundary layers that form on each side of the insulating barrier cannot be re-
solved. This supports the scaling arguments of §1.2.2, and the omission of any
kind of boundary layer by the sides of the barrier in the theory of chapter 3. The
model also shows that the centrifugal force term is the next most significant after
geostrophic balance, and so may be important in determining the flow.

5.4 The (-circulation.
5.4.1 Proposed mechanism for the (-circulation.

Condie and Griffiths (1989) performed a series of experiments with fluid in a
rotating rectangular tank, in which the two shorter side-walls were differentially
heated. They observed a horizontal circulation which had the same sense as
the (—circulation (see chapter 3) when the cooled side-wall was near the axis
of rotation. They concluded that their horizontal circulation was due to the
curvature of isopotential surfaces caused by centrifugal forces. Thus it seemed
possible that the centrifugal force was responsible for the (—circulation,

This proposed mechanism for the (-circulation can be interpreted in two ways.
Condie and Griffiths explained that fluid close to the lid of the tank, iravelling
away {rom the heated end between isopycnal surfaces tends to be stretched in the
vertical, as it approaches the axis of rotation and the isopycnal surfaces decrease
in height. Conservation of potential vorticity then requires the generation of
cyclonic relative vorticity. Fluid near the base of the tank moving away from the
cold end experiences a similar effect, which also results in the generation of a
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cyclonic circulation. In this way a circulation of the same sense as the observed
(-circulation is set up.

The thermocouple ring temperature data given in chapter 3, allows a possibly
conceptually simpler interpretation o be given to the (-circulation. Fluid by the
cold side of the barrier will be denser than fluid by the warm side of the barrier.
Consequently, providing that the radial density gradient does not prevent it, the
fluid by the cold side of the barrier should be flung outwards by the centrifugal
force. There will be radial inflow by the warm side of the barrier, by conservation
of mass. Figures 3.9 and 3.4 show that the (-circulation has radially outwards
flow on the ¢ = —x side of the barrier, which Figure 8.9 shows to be the cold
side of the barrier.

As the centrifugal force increases in strength with £, this mechanism for the
(-circulation also agrees with the observation that the velocity, v associated with
the (-circulation increases with {0, shown in Figure 3.16 (see below).

Using the Boussinesq approximation, scaling the equation of motion gave,

oW x i~ -%Vp +V8, (5.1)

(where the symbols have the meanings assigned to them in equation (1.6)), at
suitably high Q. Previously the centrifugal force had been neglected and the
potential term written, V® ~ —gZ. Since the centrifugal force appears to be
important, let,

V& = —gi + Q°F. (5.2)

Table 5.1 shows a scaling analysis for these two terms.
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Term | Magmiude Sige
—g# g 9.8 m.sec™
0% QZL"T“’l 1.3 m.sec™®

2

TABLE 5.1 : Scaling analysis for equation (5.2), using » = 7 and Q =
5.0 rad.sec™’. The result suggests that the centrifugal force might be impor-
tant at high Q.

Using equations (5.2) and (1.3) for p, the components of equation (5.1) are

o 100 02 on o
200 =~ 53r+ﬁr Qra(T-T) (5.3)
14dp
0y & -
YT o
1
0 n —22_ g4 gaT-T) (5.4)
poz

Taking 8/8z of (5.3), 8/8r of (5.4) and substituting gives,

ar

v or . o
2[]—2 ~gaE‘-+ﬂ rao

d
so that if T'/dr < 8T/8z then
dv Qro oT

8 2 0z
Linearizing, using 6z = d, r = ¥ and AT, = AT gives,

~

Qa+ b}aAT. (5.6)

4
This gives a value for the gradient Av/AQ = 0.008AT for v in mm.sec™ and Q
in rad.sec™’. Comparison with Figure 3.16 shows that this is clearly rather on
the small side, though at least equation (5.6) does give a linear dependence on

(2. However the computor simulation was used to provide a more critical test of

the role of the (-circulation in §5.4.2 below.
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5.4.2 Testing the mechanism for the (-circulation.

If the (-circulation arises because of the role of the centrifugal force, then when
the centrifugal force term is absent there can be no (-circulation. The use of
a computer model allows two simulations of the flow to be run, both identical,
except that one of the simulations is based upon a set of dynamical equations
which has had the centrifugal force term removed from them. Assuming that
the model is capable of simulating the dynamics of the system with sufficient
accuracy, if the simulation with the centrifugal force term has a (-circulation,
and the simulation without the centrifugal force does not, then the (-circulation
must arise because of the centrifugal force. This provides a more critical test of the
role of the centrifugal force than the analysis above, because in the model fewer
approximations are made to the equations of motion of the system. However
it is possible that inaccuracies due to the computational scheme used may be
significant, such as those discussed in §5.2.

Figures 5.9 and 5.10 show a numerical simulation of the flow identical to that
shown in Figures 5.1 and 5.5 except that the centrifugal term (see Table 5.2) has
been removed from the model. Comparison between Figures 5.9 and 5.1, and
Figures 5.10 and 5.3 shows that there is no appreciable difference between the
two sets of results. While it is true that the numerical model did not simulate the
(-circulation particularly well, this test provdes quite strong evidence that the
centrifugal force term plays no part in the formation of the (-circulation. This is
because a (-circulation (although a poor one) was produced in both cases, and
the model shows that the centrifugal force does not play a significant role in the

dynamics of the system at this rotation rate.
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FIGURE 5.9: Computer model simulation of flow in a fully blocked annulus
of constant depth, d = 140 mm. Horizontal velocity results in an (r, ¢)-plane.
The solid line in the three o’clock position indicates the location of the barrier.
The central arrow in each case represents a velocity of 1 mm.sec™, or 1 em.sec™!
as indicated. The heights of the (r, ¢) cross-section above the base of the annulus
are also given in the centre of each diagram. Results from run 752, the run with
1o centrifugal force term, Q = 1.2 rad.sec™, AT = 4 K. The results are identical
to those of Run 751, which included the centrifugal force.
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FIGURE 5.10: Computer model results from run 752, the run with no cen-
trifugal force term, 0 = 1.2 rad.sec™, AT = 4 K. Cross-sections in the (r, z)
plane of (a) mean radial velocity, u in cm.sec™, (b) mean azimuthal velocity,
v in cm.sec™, and (c) mean fluid temperature. In (a) and (b) solid contours
denote positive velocity, and dashed contours negative velocity. The results are
all virtually identical to those of Run 751, which included the centrifugal force.

5.4.3 The effect of reversing AT.

Equation (5.5) suggests another possibility for the mechanism of the (-circulation,
given that the centrifugal force term is unimportant, which is that v arises be-
cause of radial temperature gradients through the thermal wind equation (1.10).
In other words, though 67/dr is generally quite small its variation with radius
is sufficient to cause the flows observed in Figure 3.6. This suggestion has the
advantage that it can (in principle) account for the variation in v with z, though
calculation of v would require detailed measurements of temperature as a func-

tion of radius. The results of D.W.Johnson (private communication} shown in
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Figure 1.4(b) do suggest that the gradients are of the correct sign, and also shows
the change in the sense of the gradient in T(r) that would be required for dv/8z
to change sign with radius (see Figure 3.6). Since no measurements of temper-
ature against radius were made this approach cannot be persued here. However
equation (1.10) predicts that if 8T'/8r were to change sign, dv/8z should do so
as well.

In order to test this idea the numerical model was run with the sense of AT
reversed, all other model variables were kept the same. The results are shown in
Figures 5.11, 5.12 and 5.13. Figure 5.11 shows that the sense of the (-circulation
has reversed, which is shown more clearly in Figure 5.12, which is virtually a
‘mirror image’ of Figure 5.3. These resulis do strongly support the idea that the
(-circulation arises because of radial temperature variations, through the thermal
wind equation (1.10).

A further result is shown in Figure 5.13, which is a simulated thermocouple
ring plot from the model with AT reversed. The sense of the temperature drop
across the barrier has reversed, this is to be expected, because the sign of du/8z
was reversed by reversing AT, so that through equation (1.11), the sense of the
azimuthal temperature gradient should also be reversed. However the magnitude
of ATy when AT was reversed was much less than that obtained from the model
in Figure 5.4. This is apparently in disagreement with experimental observations
with a reversed AT, where the magnitude of AT was found to remain unchanged
(D.W.Johnson, private communication). This again suggests that the model is
having difficulties in simulating the finer details of the flow.

5.5 Conclusions.

The model does not appear to be simulating the details of the flow very well,
particularly near the inner cylinder. The azimuthal temperature gradient was
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FIGURE 5.11: Computer model simulation of flow in a fully blocked annulus
of constant depth, d = 140 mm. Horizontal velocity results in an (r, ¢)-plane.
The solid line in the three o’clock position indicates the location of the barrier.
The central arrow in each case represents a velocity of 1 mm.sec™, or 1 em.sec™
as indicated. The heights of the (r, ¢) cross-section above the base of the annulus
are also given in the centre of each diagram. Results from run 753, the run with
the reversed AT, = 1.2 rad.sec™, AT = —4 K, It is easy to see that the flow
by the outer wall has been reversed from Run 751, and in fact the (-circulation
(such as it is in the model) has also been reversed.
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FIGURE 5.12: Computer model results from run 753, the run with the re-
versed AT, Q = 1.2 rad.sec™, AT = —4 K. Cross-sections in the {r, z) plane
of (a) mean radial velocity, u in cm.sec™, (b) mean azimuthal velocity, v in
em.sec™, and (c) mean fluid temperature. In (a) and (b) solid contours de-
note positive velocity, and dashed contours negative velocity. The sense of the
r-circulation has been reversed by reversing AT in (a), as has the sense of v in
(b), suggesting that the (-circulation has changed sign with AT also.

also much too large in the simulation. The fact that the problems appear to
occur by the inner cylinder, and that the (r, z) temperature field with a barrier is
quite similar to that observed in a non-rotating annulus suggest that this problem
is essentially the same as that mentioned by White (1988), and is due to the coarse
mesh size in the model.

Section 5.3 supports the scaling arguments of §1.2.2 and indicates that there
are probably no significant boundary layers to each side of the insulating barrier.
However since the grid was evenly spaced in the ¢—direction it is not clear whether
the model resolution would be sufficient to show such a boundary layer. Thus
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FIGURE 5.13: Computer model results from run 753, with the reversed AT,
Q = 1.2 rad.sec™, and AT = —4 K. Fluid temperature at » = 7 and z = 0,
plotted against ¢. These results give ATy = 0.60°C.

the use of equation (1.11) in the theory of chapter 3 is probably justified,
as is the assumption that no boundary layers form by the barrier, although the
evidence relating to the boundary layers is far less conclusive.

The (-circulation does not appear to be due to the effect of the centrifugal
force, but probably to arise from small radial temperature gradients in the fluid
(see equation (1.10)). Without measurements of T(r) it is not possible to calculate
v(r, z), though qualitatively the gradients appear to be in the correct sense (see
Figures 1.4(b) and 38.6). While the form for the (-circulation suggested in §3.2.1
and Figure 8.12 is perhaps an over simplification, it is clear that at sufficiently
high  there must come a point where the centrifugal force term will become

significant.
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