Chapter 3

Experiments with an insulating
barrier and a flat base.

This chapter describes the resulis of a series of measurements performed with an
annulus system fully blocked by a thermally insulating barrier, and with a flat
base, giving the convection chamber constant depth.

Previous workers have shown thai in an unblocked annulus the fluid heat
transport decreases rapidly with increasing {2 (see Figure 1.5). The measurements
reported in this chapter, using an annulus blocked by a radial barrier, confirm
the findings of Bowden and Eden (1968), which showed that the barrier modified
the flow, so that the heat adveciion became largely independent of {1 - a result
most unlke the unblocked flows. This thesis attempts to identify the processes
responsible for maintaining the fluid heat transport. Ii has been possible to
explain the mechanism by which one of these processes seems to work in this
chapler, and chapter 5 explores two possible explanations for another of the
processes.

Section 3.1 deals with the experimental measurements (including the heat
transport results), which are summarized in section 3.1.3. The resulis are dis-
cussed in section 3.2. The flow is simplified to its basic components in §3.2.1,

where the three basic processes by which the fluid advects heat are proposed.
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The equations of heat advection for each of these components are derived (with
appropriate simplifications) in §3.2.2. A mechanism for one component of the
flow is put foward in §3.2.3 and tested in §3.2.4. The heat advection by other
aspects of the flow is considered in §§3.2.5 and 3.2.6.

Conclusions about the nature of the flow are given in section 3.3, while 3.4
suggests how further investigations may be able to answer certain questions that
arise from these experiments.

3.1 Experimental results.
3.1.1 Velocity measurements.

A regime diagram showing the values of 7 and © for all the velocity measurements
taken with the fully blocking thermally insulating barrier and flat base is shown
in Figure 8.1, The measurements were taken at two values of AT, the upper line
being those results where AT 2 10 K and the lower, AT 2 4 K. Since © o Q2
and 7 o 0%, Figure 3.1 shows low values of 2 at the top left corner and high
values at the bottom right. It can be seen that eddies occur for © < 0.4 and for
107,

Figures 3.2 - 3.4 show measurements of horizontal velocities as a regular grid
of vectors in an (r, ¢)-plane. Figure 3.2 was taken at Q = 0.40 rad.sec™* and
AT = 10.00 K. At the top of the annulus (a) strong radial flow can be seen
away from the hot outer cylinder, towards the cold inner cylinder, while at the
bottom of the annulus (e) the reverse can be seen. Prograde flow can be seen
near the outer cylinder in (d) and (e), while retrograde flow appears near the
inner cylinder in (b), (c), (d) and possibly (e). While measurements of vertical
velocities were not available, continuity considerations suggest that fluid must be
rising by the hot outer cylinder whilst moving in a prograde sense (at least in the
lower regions), before flowing radially inwards at the top of the annulus, Fluid
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FIGURE 3.1: Regime diagram showing the values of 7 and © for
velocity runs 210-242, the measurements made with an insulating
barrier and constant depth, d = 140 mm. Measurements where no
eddies were seen in the system are shown by circles, and measure-
ments where eddies were seen are shown by squares. The dashed
line indicates the approximate location of the transition for the on-
set of baroclinic waves in an unblocked annulus, such as that used
by Fowlis and Hide (1965). The location of the dashed line was ob-
tained from D.W.Johnson (private communication), while the solid
line indicates the transition for the onset of eddies in the present

experiments.
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FIGURE 3.2: Horizontal velocity field data from VVAS reprojected onto a
regular grid, for the annulus with a full thermally insulating barrier, The location
of the barrier is indicated by the solid line in the 3 o’clock position. The flow is
shown at various heights above the base of the annulus, these are; (a) 124mm,
(b) 97mm, (c) 70mm, (d) 43mm, and (e) 16mm. Data from Run 229, Q =
0.40 rad.sec™’, AT = 10.00 K. In each case the central arrow depicts a velocity
of 1 mm.sec™’. The depth of the annulus was d = 140 mm.
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FIGURE 3.3: Horizontal velocity field data from VVAS reprojected onto a
regular grid, for the annulus with a full thermally insulating barrier. The location
of the barrier is indicated by the solid line in the 3 o’clock position. The flow is
shown at various heights above the base of the annulus, these are; (a) 124mm,
(b) 97mm, (c) 70mm, (d) 43mm, and (e) 16mm. Data from Run 237, Q =
1.20 rad.sec™, AT = 10.09 K. In each case the central arrow depicts a velocity
of 1 mm.sec™*. The depth of the annulus was d = 140 mm.
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FIGURE 3.4: Horizontal velocity field data from VVAS reprojected onto a
regular grid, for the annulus with a full thermally insulating barrier. The location
of the barrier is indicated by the solid line in the 3 o’clock position. The flow is
shown ai various heights above the base of the annulus, these are; (a) 124mm,
(b) 97mm, (c) 70mm, (d) 43mm, and (e) 16mm. Data from Run 241, Q =
3.00 rad.sec™, AT = 9.98 K. In each case the central arrow depicts a velocity
of 1 mm.sec™ . The depth of the annulus was d = 140 mm.

67



by the cold inner cylinder appears to be sinking and moving in a retrograde
sense, before flowing radially outwards at the bottom of the annulus.

Figure 3.8 shows the fluid motions for = 1.20 rad.sec™ and AT = 10.09 K.
At this higher rotation rate the flow patiern is rather similar to that shown in
Figure 3.2, with radial inflow at the top (a) and radial outflow at the bottom
(e) of the annulus. The prograde flow near the outer cylinder and the retrograde
flow by the inner cylinder appear to be stronger at this higher value of €.

Figure 3.4 shows results for Q0 = 3.00 rad.sec™ and AT = 9.98 K. The flow
has one or more eddies in it, but still appears to have the basic features of radial
inflow near the top (a) and radial outflow near the bottom (e). Prograde flow
can be seen by the outer cylinder at almost all heights (though not in (e}), while
there is retrograde flow by the inner cylinder.

The azimuthal mean of the radial component of the fluid motions shown in
Figures 3.2 - 3.4 is more clearly shown in Figure 3.5, which shows contours of
the radial component of velocity, u in an (r, z)-plane. (a) - (c) are the results
for the values of  used in Figures 3.2 - 3.4 respectively. Figure 2.5 clearly
shows the radial inflow at the top of the annulus and the radial outflow at the
bottom. Also as the contours are approximately evenly spaced with z at mid-
radius (particularly in (b) and (c)) this suggests that du/dz ~ constant. It is
worth noting that the magnitudes of u remain fairly constant with £, a result
which is likely to be significant in terms of the heat iransporied by advection
through the annulus.

The mean over azimuth of the azimuthal component of the fluid motions is
shown in Figure 3.6, where contours of the azimuthal component of velocity, v in
an (r,z)-plane can be seen. (a) - (c) are the results for the values of Q used in
Figures 8.2 - 8.4 respectively. The flow patters are quite complex, showing both

radial and vertical shear. However it is clear that the magnitude of v increases
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FIGURE 3.5: The figures show contours of the azimuthal mean
of the radial component of velocity in an (r, z) plane, for the system
with an insulating barrier and constant depth, d = 140 mm. Solid
contours represent radially outwards flow and dashed contours, in-
wards flow. (a) Run 229, AT = 10.00 K, Q = 0.400 rad.sec™,
(b) Run 237, AT = 10.09 K, Q = 1.196 rad.sec™’, and (c) Run
241, AT = 9.98 K, Q = 3.003 rad.sec™*. In all cases a clear shear
of radial velocity with z can be seen, which is suggestive of radial
overturning. In (b) and (c) the even spacing of the contours with z
at mid-radius indicates that 8u/0z ~ constant.

significantly as (2 increases.

Figure 3.7 shows contours of the radial component of velocity, u in a (¢, z)-
plane at mid-radius, where (a) - (c) again correspond to the results seen in Figures
3.2 - 3.4 In (a) and (b) the shear of u with z can again be seen, as well as
(particularly in (b)) a shear of u with ¢. In (c) there are areas where the shear
of u with z and ¢ can be clearly seen, but also there is a localized region where
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FIGURE 3.6: The figures show contours of the mean over ¢ of v
in an (r, z) plane for the annulus with a full insulating barrier and
depth, d = 140 mm. Solid contours represent prograde flow and
dashed contours retrograde flow. (a) Run 229, AT =10.00 K, Q =
0.400 rad.sec™; (b) run 237, AT = 10.09 K, Q = 1.196 rad.sec™’;
and (c) run 241, AT = 9.98 K, Q = 3.003 rad.sec™’. The flow
patierns appear to be quite complex with both radial and vertical
shear. At mid-height (z = 0) the shear of v appears to increase with
2

u has strong dependence on ¢, which would appear to correspond to a localized
eddy, with little vertical structure. This is characteristic of the sort of eddies seen
at higher rotation rates in the system.

The velocity results are summarized in Table 3.1, which in addition to various
control parameters and non-dimensional numbers indicates whether eddies were

present or not during a measurement under the heading of ‘flow type’.
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FIGURE 3.7: The figures show contours of u in a (4, z) plane for the an-
nulus with a full insulating barrier. Solid contours represent radially outwards
flow and dashed contours, inwards flow. (a) Run 229, AT = 10.00 K, Q =
0.40 rad.sec™, contour interval 0.08 mm.sec™*, (b) Run 237, AT = 10.09 K,
Q = 1.20 rad.sec™, contour interval 0.07 mm.sec™, and (c) Run 241, AT =
9.98 K, Q = 3.00 rad.sec™, contour interval 0.12 mm.sec™?,
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Rur | AT n Prandt] =] Taylor | Rayleigh Elcman | Flow type
No | K |rodsec™ | No No No No

210 | 403 [ 0.489 13.8 2.26 112 % 10° | 8.60 x 10° | 5.93 x 10~* | no eddies
211 | 404 | 0.195 136 | 1.43x 10" | 1.78x 105 | 8.62%10° | 1.49 x 10~? | no eddies
212 | 407 | 0381 13.8 3.58 T.15% 105 | 869 % 10% | 7.41 x 1074 | no eddies
213 | 407 | 0.589 13.6 1.58 1.61x 10° | 869 x 10° | 4.94 x 10~* | no eddies
215 | 405 | 0.980 13.6 | 5.67x 107" | 4,49 10° | 8.64 x 10® | 2.96 x 10! | no eddies
216 | 406 | L1786 13.6 [394x 1077 [ 6.47x 107 | 8.66 x 107 | 2.46 x 10~7 | no eddies
217 | 4.05 1372 136 [289x 107! | 8.80x 10° | 864 x 10° | 211 x 107* |  eddies
218 | 4.08 1.569 136 [ 221x 107! | 1.15x 107 | 864 x 10° | 1.85 x 10™* | eddies
219 | 4.03 1.565 138 | 1.95x%10=' | 1.30x 107 | 8.60x 10° | 1.74 x 10~* | eddies
220 | 4.07 | 1.866 13.6 | 1.97x107% | 1.30x 107 | 8.69%10° | L.7T4 x 10™* | eddies
221 | 379 | 2.000 136 [ 1.27x 107 [ 1.87x 10" | 8.69 % 10° | 1.45x L0™% | eddies
222 | 404 2.500 136 | 8.69x107% | 2.92x 107 | 8.62x 10% | L.16 x 10™* | eddies
223 | 4.04 | 2,000 136 | 1L36x 10" | 1.87x 107 | 8.62x10° | 145 x 10~* | eddies
224 | 405 | 1.999 13.6 | 136x 10~ | 1.87x 107 | 8.64x 10° | 1.45 x 10~% | eddies
225 | 409 | 3.503 13.6 | 448x 1073 | 574 x 107 | 8.73x 10% [ 8.28 x 10~F | eddies
226 | 408 | 3.002 13.6 |68.08x107% | 421x 107 | 871 x 10° | 9.66 x 10™° | eddies
227 | 10.01 | 0.500 13.8 5.38 L17x 10% | 214 %107 | 5.80 % 10~* | no eddies
228 | 10.00 | 0.200 136 | 3.36x 10* | 1.87x 10° | 2.13x 107 | 1.45 x 10~® | no eddies
229 | 10.00 | 0.400 13.6 8.42 TATx 105 | 2.13x 107 | 7.26 x 10~ | no eddies
230 | 9.99 | 0.589 13.6 3.7¢ 1.68x 10% | 213x 107 | 4.84 x 10~ | no eddies
231 | 9.7 | 0.799 13.6 2.10 299 x 10° [ 2.13x 107 | 3.83 x 107 | no eddies
232 | 9.98 | 1.000 13.8 1.34 468 % 10° | 2.13x 107 | 2.90 x 10™* | no eddies
233 | 10.07 | 1.196 136 | 9.45x 107! | 6.69x 10% | 2.15x 107 | 242 x 10™* | no eddies
234 | 10.08 | 1.402 13.6 | 6.88x 10" | 9.20x 10% | 2.15x 107 | 2.07 x 10~* | no eddies
235 | 10.01 | 1.508 136 |526x107% | 1.20x 107 | 2.14 x 107 | 1.81 x 10~* | no eddies
236 | 10.10 | 1.000 13.8 1.36 468 % 10% | 216 x 107 | 2.90 x 1077 | no eddies
237 | 1009 | 1.196 136 |9.47x107' | 6.69x 10° | 2.15x 107 | 2.42x 10~™* | no eddies
238 | 9.93 | 1.697 138 |4.64x107" | 1.35x 107 | 212x107 | 171 x 10~ | eddies
239 | 9.98 | 2.000 136 [3.35x10°" | 1.87x 107 | 2.13x 107 | 145 x 10 | eddies
240 [ 10.00 | 2.500 136 | 215x107% | 2.92x 107 | 213x 107 | 116 x 10™% | eddies
241 | 9.98 [ 3.003 13.6 [ 140x 1077 [422x107 | 213x107 | 0.65x 107 | eddies
{242 | 9.96 | 3.504 13.6 | 1.09x 107! | 5.74x 107 | 2.13x 107 | 827 x 10~% | eddies

TABLE 3.1: Velocity measurements with a full thermally insu-

lating barrier and a flat base.

3.1.2 Heat and temperature measurements.

A regime diagram showing the values of © and 7 for all the temperature and
heat transport measurements is shown in Figure 8.8, Comparison with Figure
3.1 shows that the transition for the onset of eddies was found to occur at similar
values to those seen using velocity measurements.

Figure 3.9 shows the fluid temperature measured by the thermocouple ring at
mid-radius (r = 7), and mid-height (z = 0) as a function of ¢, T(F, z = 0;4,1).
The barrier was placed at ¢ = . Plots of temperature are given for three values
of Q for each of the two values of AT used. Ii can be seen that
OT(7,z = 0;¢)/0¢ = constant over most rotation rates, although ‘kinks’ appear
at higher values of  in some cases. The temperature drop across the barrier,
AT’ can be seen to increase with ).

The dependence of ATs on €} can be seen more clearly in Figure .10, which
shows plots of AT’z against Q) for the two values of AT used in the experiments.
It can be seen that AT} increases approximately linearly with £ before levelling
off at a value of 20 - 25 % of AT

The total heat transport of the fluid as expressed by the Nusselt number,
Nu(f2) is shown in Figure 3.11. The plots show Nu(£2)/Nu(f = 0) against £, for
the two values of AT used. Both sets of results show that the Nusselt number (and
therefore the advective heat transport by the fluid) remains fairly constant with
€2, at approximately the same value as when €2 = 0 but increases (at AT = 10 K)
for Q above about 1.2 rad.sec™ to reach a maximum about 7% higher than at
Q= 0. Table 3.1 shows that eddies occured for 2 larger than 1.2 to 1.7 rad.sec™.
When AT =4 K, Nu(Q)~ Nu(Q2 = 0) to within the accuracy of the error bars.

Table 3.2 summarizes the temperature and heat transport results, showing
the total heat conduction by the fluid in addition to the total heat transport by
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FIGURE 3.8: Regime diagram showing the values of 7 and ©
for Runs 4U-9L, the measurements made with an insulating bar-
rier and constant depth, d = 140 mm. The circles show values
where temperature measurements indicated that there were no ed-
dies in the system, and the squares show values where eddies were
present. The dashed line indicates the approximate location of the
transition for the onset of baroclinic waves in an unblocked annulus,
such as that used by Fowlis and Hide (1965). The location of the
dashed line was obtained from D.W.Johnson (private communica-
tion), while the solid line indicates the transition for the onset of
eddies in the present experiments.
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FIGURE 3.9: Experimental results showing temperature of ring
thermocouple against azimuthal position for three rotation rates,
2 =0.0,1.9(or 2.0) and 5.0 rad.sec™?, for the system with constant
depth, d = 140 mm and the full thermally insulating barrier. Each
of the scale markings along the horizontal axis shows the location of
one of the thermocouples in the ring. Measurements of temperature
were taken for each thermocouple in the ring, with a straight line
drawn between them as a guide to the eye. The standard errors were
0.014°C in both cases. The externally applied temperature differ-
ences were (a) AT = 4 K, (b) AT =~ 10 K. ATp(Q) was defined
as the difference between the maximum and minimum thermocou-
ple ring temperatures for a given . As the figures show ATy was
generally the temperature difference between one side of the barrier
and the other.
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TABLE 3.2 (Continued.)

Temperature and heat transport measurements for
the annulus with a fully blocking, thermally insulating barrier,

TABLE 3.2

79

78



the fluid and the Nusselt number for each measurement.

3.1.3 Summary of results.

The observed flow for an annulus with a fully blocking thermally insulating barrier
appears to consist of three main components: (1) a radial overturning in which
Ou/0dz sconstant, (2) a circulation in the horizontal (which has some vertical
structure however) which manifests itself as prograde flow by the outer cylinder
and retrograde flow by the inner cylinder, and (3) eddies which appear at higher
values of  and are seen at values of © ~ 0.4 and values of 7 2 10,

A temperature drop, AT is observed across the barrier for all values of Q # 0.
ATg appears to increase linearly with § until a maximum is reached at a value
of about 20% to 25% of the applied AT. This maximum is reached af a value of
O~6x10"%0r8x107%

The total heat transported by the fluid remained fairly constant against {2 at
the = 0 value, though at AT = 10 K a gradual increase with § was seen above

1.2 rad.sec™ which corresponded to the range of Q over which eddies were seen.

3.2 Discussion of results.
3.2.1 Simplified interpretation of flow pattern.

Excluding the eddies, the interpretation of the experimental results can be con-
siderably simplified by regarding the fluid motions as the superposition of iwo
circulations. These circulations are illustrated schematically by Figure 3.12 The
first is a radial overturning cell, characterized by 8u/dz ~ constant. The axis of
this circulation lies antiparallel to ¢, the unit azimuthal vector, and by analogy
with the components of the relative vorticity vector & = (£, 5, ) shall be denoted
the s-circulation. The second circulation is assumed to be independent of 2 and

lies in a horizontal plane, using the same thinking as above it shall be known as
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FIGURE 3.12: Diagram illustrating the simplified flow pattern
representing fluid motions for the results described in section 3.1.
The velocity measurements when there are no eddies are represented
by the two circulations shown by the arrows. The radial overturning
cell, which is independent of ¢, is called the r-circulation, while the
horizontal circulation, which is independent of z is called the (-
circulation. These circulations represent a useful simplification to
the observed flows when eddies are absent.
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the (-circulation.

Both these circulations contribute {o radial motions in the fluid, and so may
contribute to the advective heat transport by the fluid. By use of this simplifi-
cation, the problem of understanding how the fluid maintains the heat transport
reduces to that of finding the mechanisms for the two circulations, and the heat

transport contributions of each of the circulations and the eddies.

3.2.2 Heat transport considerations.

The experiments measured the total heat transported by the fluid, Hy. =
Heong + Hago. The advective heat transport could therefore be obtained by sub-
tracting the conductive heat transport,

_ 2mkATd
“™ = Tn(b/a)

from Hsa1. The net heat transport through a surface § by advection is

Ean‘.w(r: ¢1 Z, t} = .[9 ﬁr:ndu[rs ¢| 2y t}d‘-;\ fal)

hence if the temperature and velocity fields for the fluid motions are known, the
advective heat transport may be calculated from them for comparison with the
experimental results, In practice it was not possible to measure the entire tem-
perature field, T(r, ¢, z,1), and the velocity field data was limited by its accuracy.
The approach followed for the temperature field was to use the limited data avail-
able, T(7,z = 0;¢,¢) with appropriate approximations. The velocity field data
was used to attempt to identify the mechanisms for the flow, so that the fluid
velocities could be calculated using appropriate theory, from the more accurate
temperature field data, and various experimental parameters. [t proved possible
to identify the mechanism for the r-circulation, however the mechanism for the
(-circulation proved more elusive, so that velocity data had to be used to estimate

its heat transport contribution.
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The total advective heat transport is given by equation (3.1) where H., is
given by equation (1.4) and the direction of d8 is normal to the surface 8. If the
lid and base of the annulus were perfect insulators, the heat advected through
the anmulus (and measured at the inner cylinder) must have passed through a
cylindrical surface of height d at mid-radius, # = 1(a + ). In this case the
normal to the surface is parallel to , the unit vector in the r-direction, so that
d8 = #rdpdz. As @ = (u,v,w), u denotes the radial component of velocity so
that the advective heat transport may be written

1 pa
Hualrid, ,8) = f [ o782, 0,7 6, 2, 1pulFs 6, 2, )T(F: 6, 2, )darils
b Ja
(3.2)
Equation (3.2) is to be integrated between

¢n=‘(1’“f):¢1=f—€=30=“§+“("i¢)'31:d (3.3)

E:
where 2¢ is the angular thickness of the barrier. When the base of the annulus is
flat a(F; ¢) = 0, but a(7; ¢) # 0 for the experiments with sloping bases which are
described in chapter 6.

Assuming the density and specific heat of the fluid to be constant:

p(7; 8, 2,t) = p, and Cy(F; 4, 2,t) = Cj.

The overbar denotes the spatial average over the fluid, () = [( )drrdgdz[ [ drrddz].

The values for 5 and C, were taken to be the fluid density as measured in the
laboratory at 20°C, and the specific heat capacity of a water - glycerol solution
of the appropriate density at 20°C.
The temperature may be writien
ATy(F, 2z = D;t)¢+ AT.(F, ¢ = 0;1)
2 d

T(F;9,2,t) = 2+ T(7¢,2,8)+T, (34)

where it should be noted that subscripts are not (and shall not be) used to
represent derivatives. By definition ATy(F,z = 0;t) and AT,(F,¢ = 0;t) are
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independent of ¢ and z, though not of t. ATy and AT, have been formulated so
that they correspond to the (potentially) measurable quantities of the azimuthal
and vertical temperature differences in the fluid. It should be noted that equation
(3.4) is formally correct because T"(F; 4, z,t) is a completely general function of
¢,z and ¢. However the first two terms (linear in ¢ and z) have been chosen
because they represent a useful approximation to the temperature in the analysis
which follows. Ideally T' should be defined in the same way as 5 above, however
experimental constraints meant that in practice the quantity
JT(7,z=0; ¢, t)rdg
[ rdé
was used to calculate T' when its value was required.

A further simplification is made by using
T'(F; ¢, 2,t) &« T'(F, 2 = 0y 4, 2). (3.5)

This is done because the thermocouple ring data gives T'(7, z = 0; ¢, t) so while
there is no prospect of being able to calculate any z dependence in 7" it might
be possible to calculate the ¢ dependence. A further consideration is that the
‘kinks’ that appear in the thermocouple ring data (e.g. see Figure 3.9 (a)) show
that there are at least non-linearities in the ¢ dependence of T". Using the

approximations above equation (3.2) may be rewritten
LI
HuaslFid,2,) = 0, f f u(F; b, 2, 0T (s 4,2, H)dsfdd. (3.6)
o I

It can be seen by comparison with equation (3.4) that equation (3.6) contains
the term .
1 L)
G, f f u(F; @, z,t)Tdz7dg.
do Jz
However because the fluid is assumed to be incompressible, and the walls of the

annulus are non-porous, the net flux of fluid through the surface at r = # must
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be zero. Hence

$1 pn $1
ﬁq, f f u(F; ¢, 2,t)Tderdg = ﬁGPT [ [ " u(F; ¢, z,t)dzrdd = 0.
$ Jn d Jn
Hence the advective heat transport may be written
$1
Hopl7; 4, 2,t) = ﬁ(f,,f /-1 u(; 4, 2,t) [T(7; 6, 2,t) — T] derdg.  (3.7)
d Jn

If the flow is split into the two circulations suggested in section 3.2.1 and

illustrated in Figure 3.12, then u(F; ¢, z,t) may be written
u(F; 4, 2,1) = uy(F; 2,t) + w7y 4, 2) + (73 4, 2,8), (3.8)

where u,(7; z, t) represents the radial velocity at r = 7 due to the r-circulation and
w(F; ¢,t) is the radial velocity due to the (-circulation. u/(F;¢, z,1) represents
any other flows that may be present in the fluid, and in particular will include
the eddies seen at higher values of . Since v'(F; ¢, z,t) is a perfectly general
function of ¢, 7 and ¢, equation (3.8) is formally correct. Thus H,4(7; ¢, 2,1t)
may be written as

Hadﬂ[ﬂ ¢, z:t) = H!T(F; 2, t) + HC(FE 4, 3:t) + Hr(’-‘i 4, z,t}, (3-9)

where H,(; ¢, 2,t) is the heat advected by the 7-circulation, H;(7; 4, z,1) is the
heat advected by the (-circulation and H'(7; ¢, z,1) is the heat advected by any
other processes, including the eddies. Thus H,, H, and H' may be defined as:

¢ pn
By(fid,2,1) = 7, L f unlF 1) [T 2,0) - T] derdg,  (3.10)

Y -
H(7; ¢,2,t) = 3C, L f ue(F; 6,t) [T(7; 4, 2,t) — T dzrdg, (3.11)

and
H(F4,2,8) = 16, f ' f V(5 d 1) [T 6, - T) defdg. (3.12)
do Jm
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Each of these terms is discussed below. In the case of the n-circulation it has
been possible to propose a mechanism, so that an expression for u,(7; z, ) can be
derived. For H; and H' this has proved difficult, and only their advective heat
transport contributions are discussed in this chapter.

3.2.3 Suggested mechanism for the 5-circulation.

Following Hide’s suggestion, as reported by Bowden (1961) (see also §1.3.2).
The approximately linear dependence of u on z shown in Figure 5.5 and the
appearance of a temperature drop across the barrier suggest that (7, z,t) may
be governed by a balance between the Coriolis force and an azimuthal pressure
gradient supported by the barrier. The scaling arguments of §1.2.2 (Table 1.1
(b)), suggest that there could be reasonable geostrophic balance in the ¢-direction
down to the smallest rotation rates (2 ~ 0.1 rad.sec™). Thus the part of the so -
called ‘Thermal Wind’ equation (1.11) which describes #u/82 might be expected
to give a good approximation for du,/dz. Thus:

(r $t) -*——(f $,2,1).
Integration then gives
[u[ﬂ¢: zlt)I = '2%]: gT_qb{Fi ¢szst)dz+ “c[F; ?, t):

where u.(F; ,) is the function of integration. Substituting for T(7; 4, ,t) from
equation (3.4), using (3.5), and expressing u. as the sum of u(F; ¢,t) (which is
linear in ¢) and uy(; ¢,1) (which is a completely general function of ¢) means
that u(F; ¢, z,1) can be rewritten

sl ~ g [ SO0 g

l faqa(”‘ 0;4,t)dz + (7 4,t)[ . (3.13)
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Comparison with equation (3.8}, noticing that the first term on the night hand

side of (3.13) is a function of (7; z,t) shows that

go [ATy
[y (F; 2, 8)| = 207 | 2n —L(F, 2= 0;t)dz. (3.14)

Similarly the second term is a function of {r; ¢,1), so that uo(F; ¢, ) is w(F; d, ),
while the final term (in square brackets) expresses u/(F; ¢, z,1).

Now H,(7;¢,,1t) can be obtained by substituting equations (3.14) and (3.4)
into (3.10). Integration over z then gives:

7CogaATy f*' Mé(r z—ﬂt
4Q0r
AT(r‘;‘:‘:lr 0;t) 3+T[f' z—O 16,t) 5 ] ”

The limits on z are given in equation (3.3). Thus

Hy(F;¢,2,1) =

+

HIT(F;¢: zlt) =
5C,gaATy(F, z = 0;t) /‘*l { ’aT,(f,¢ = D;i]cF]
4Q0r 4 12
ATy(F,z=0;1) AT(F,¢=0;t) [ 3ad® 3a°d
% [4—w¢a[d' A v (’T"'T_“)
+ wa{d = a.)] } a4, (3.15)

where a = a(F;¢). Equation (3.15) is required later, with a(F;¢) # 0 when the
results with sloping bases are analysed in chapter 6; however when the base is

flat a(F; ¢) = 0, the second term in the square brackets vanishes, and

5C,qaATy(F, z = 0;t)ATL(F, ¢ = 0;t)d*(m - e)
240

Since the half-angular thickness of the barrier ¢ < 7 it can be neglected, also

H,(F,a=0;1) = g

since there was no data available for AT, (7, ¢ = 0;1), the approximation was made
that AT, ~ AT. Further, putting AT; = ATs means that H,(F,a = 0;t) can
now be expressed only in terms of experimental parameters and fluid properties:

_Cipg GQTH AT

H(Fa=0;t)x~ i (3.16)
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I it is possible to find a region of parameter space where the n-circulation is
the primary cause of heat advection in the sysiem, then it should be possible to
test the result of equation (3.16) explicitly.

3.2.4 Testing the theory for the 5-circulation.

If heat advection by eddies forms the main contribution to H'(; ¢, z,t), then at
values of {) where no eddies form (£ <12 rad.sec™), H'(F; ¢, 2,1) ~ 0. Also
Figures 3.2 - 8.4, 3.6, 3.7 suggest that the (-circulation is weakest at small Q.
Hence it is possible to make the hypothesis that at small ©, the n-circulation

dominates the heat advection, so that equation (3.9) becomes
Ho1(F; ¢, 2,t) = Hy(F,a = 05t).

If this is the case, then by (3.16),
r.a = ;1) POI0OTSAT
Hog(F,a=0;t) ~ 510 :

Hence it is possible to define a quantity A, as

-ls 24-9._5‘,;,,(?,3 = Ci;t)I (3.17)
pC,gaATpATd?

where it is expected that A, ~ 1 at low rotation rates. Figure 5.13 shows plots
of A7 against Q) for the two values of AT used in the experiments. It can be
seen that for @ < 3.0 rad.sec™!, when AT =4 K, A7! & 1.15 giving A. = 0.9.
A similar value is found for AT = 10 K, bul over a larger range of Q. Only at
quite large rotation rates in Figure 8.18 (a) does A7* deviate significantly from
unity, which is to be expected as the heat advection from the (-circulation and
the eddies becomes more important at higher 2. The interpretation of A7 can

be assisted by noticing that by substituting (3.16) into (3.17), A7 = H,q4/H,,
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this proves helpful in later discussions.

This result agrees closely with the hypothesis made above, namely that only
the n-circulation makes a significant contribution to the heat advection at low
rotation rates (Q < 3.0 rad.sec™!), and provides strong evidence that equation
(3.16) correctly describes heat advection by the -circulation.

The simple linear dependence of A;* on {2 for higher rotation rates in Figure
8.13 (a) allows A, to be expressed empirically as

A, = AMin(1, Rp/R), (3.18)

where the function ‘Min(z,y)’ is defined as the smaller of the two quantities =

and y, and

VyoATd
T (3.19)

Rp can be regarded as an estimate of the Rossby radius of deformation for the

RDE

fluid. In this case equation (3.17) can be written

240 H ,,(F, & = 0;t)Min(1, Rp/R)

0o TE A, (3.20)

Y(f,a=0;0,1) =

where it is to be expected that ¥ ~ ATp. Figure 3.1 shows plots of Y(,a =
0;4,1) against ATp, where A ~ 1 and R ~ 1 e¢m. It can be seen that there
is almost complete agreement to within the accuracy of the error bars. Thus
Y(7,a=0;Q,1) in equation (3.20) provides a very good estimate of AT if H,q,
is known, or vice - versa.

A further test for the mechanism for the r-circulation can be seen {from equa-
tion (3.14). By substituting AT for AT} in (3.14) and considering Figure 3.10it
can be seen that while AT o< Q, equation (3.14) predicts that u,(F; z, ) should
be independent of Q; up to about 3.0 rad.sec™ in the AT = 4 K case, and for
a greater range when AT = 10 K. This observation is supporied by Figure 3.5

where this does indeed appear to be the case. Table 3.9 shows the maximum
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positive and negative values of u againsi Q. These results are plotied in Figure

J.15, and u does appear to be constant to the accuracy of the error bars, at least

up to @ = 3.0 rad.sec™ and possibly beyond. This provides a further piece of

evidence that (3.14) correctly describes w,(7; z,1).

AT~4 K — AT=10K

Run [+] Max >0 | Maxu <0 || Errorin « || Run [1] Mexu>0 | Max u <0
No | radsec™ | mm.sec™! | mm.sec? | mm.sec! || No | radsec™! | mm.sec™! | mm.sec™
210 0.489 0.18 -0.20 0.09 227 0.500 0.20 -0.25

211 0.195 0.14 -0.21 0.08 228 0.200 0.18 -0.24

212 0.381 0.13 -0.20 0.09 229 0.400 0.20 -0.26

213 0.589 0.18 -0.15 0.09 230 0.589 0.18 -0.25

215 0.980 0.18 -0.18 0.09 231 0.799 0.22 -0.27

216 1178 0.18 -0.19 0.09 232 1.000 0.18 -0.27 i
N7 1372 0.18 -0.18 0.09 233 1.196 0.25 -0.28
218 1.568 0.16 -0.19 0.09 234 1.402 0.23 -0.28 |
219 1.665 0.18 -0.18 0.09 238 1.000 0.21 <027 |
221 2.000 0.18 -0.16 0.09 237 1.196 0.23 026 |
222 2.500 0.17 -0.18 0.09 238 1.897 0.24 0.2 |
223 2.000 0.16 -0.15 0.08 239 2.000 0.23 -0.23 i
224 1.999 0.15 -0.15 0.09 240 2.500 0.27 -0.23 |
225 3.503 0.10 -0.15 0.09 241 3.003 0.22 -0.24 |
226 3.002 0.17 -0.16 0.08 242 3.504 0.18 <025 |

TABLE 3.3: Measurements of the maximum positive, and maximum negative
values of v, measured during the experiments with a full, thermally insulating

barrier.

3.2.5 Heat advection by the (-circulation.

Equation (3.11) gives the heat advection by the {-circulation, H(F; ¢, z,¢). How-

ever without knowing the mechanism for that circulation it is impossible to write

an equation to describe u;(F;d,%). H;(7 ¢, z,t) can still be estimated from ex-

perimental measurements of velocity, If u(7;d,¢) is assumed to have a linear

dependence on ¢, then

w(F; 4,t) =

Auy(F 2= 0;1)
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FIGURE 3.15: Plots of (a), (c) maximum positive u against 2,
(b), (d) maximum negative u against {2, for (a), (b) AT =4 K and
(c), (d) AT = 10 K, using the velocity results given in Table 3.3.
The results all show that, to the accuracy of the error bars, u is
constant with {. This result is consistent with equation (3.14) and

the mechanism proposed for the r-circulation in §3.2.3.
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so that equation (3.11) can be written

B 1" Buglf 2= 01)

5 ¢ [T(7; ¢, 2,t) - T] dzrdg.

H([f_';‘ﬁ: z,t] ~ ﬁép [

$ Ja

Integration over z leads to

glpAuglF,z = 0; $ Fz=10
B s0) o Zabultn =0 {[AT‘{' %) 4+ (7,2 = 0,4, )9

2 4o 271'
ATy(F, 2= 05t ATF, ¢ =0t
+a ’ d(rz':r )é‘l h {f‘ 2i )-ﬁ{d o tl)
=T'(F, 2= 0;¢,t)¢]} 7dd, (3.21)

where a = a(f; ¢). In the flat base case a(F; ¢) = 0 and the second term in square

brackets vanishes, so that integration yields

Ef{ﬂa i 0;‘1{’:” &
FCAuy(F, 2 = 0;t)7d [ATy(F, z =
ir 3

g #1

Ot / T'(7,2 = 0;4,t)¢d9) ,
o

(3.22)

where the approximation that the angular half-width of the barrier, ¢ € 7 has
again been made. As before put ATy & AT, and [T'(F,z = 0;4,t)¢ds can
be calculated from the thermocouple ring measurements, T(, z = 0; ¢, t) using a
simple numerical scheme . Auy must be estimated from experimental velocity
measurements. Table 3.4 gives the maximum positive and negative values of v
from the experiments.

As the measurements of v were perpendicular to the flow in the -circulation,
they can only arise from the (-circulation. Figure .16 shows plots of v against

), from where it can be seen that

[v] 2 0.020 em.sec™ at AT x4 K,

' T'$d¢ was calculated as follows: [ T'¢d¢ s B2, T!4i64, where T! = T'(7, z = 0;4i, 1),
¢i =2x(i —1)/32+ 27 /64, 64 = 27/32 and i is the thermocouple ring number.

94

AT =4 K — AT=10K

Run a2 Max v >0 | Max v <0 || Errorin v || Ran 1] Maxv>0 | Maxv <0
No | rad.sec™ | mm.sec™ | mm.sec™ || mm.sec™ || No | rad.sec™ | mm.sec™ | mm.sec™!
210 | 0.489 0.28 -0.16 0.08 || 227 | 0.500 0.43 015
211 0.195 0.20 -0.11 0.08 228 0.200 0.26 -0.09
212 0.391 0.27 -0.17 0.08 229 0.400 0.42 -0.11
213 0.58% 0.26 -0.19 0.09 230 0,599 0.45 -0.18
215 0.980 0.37 -0.38 0.08 231 0.799 0.48 -0.24
216 1.176 0.27 -0.36 0.09 232 1.000 0.48 -0.28
217 1372 0.38 -0.41 0.08 233 1.198 0.45 -0.34
218 1.568 0.36 -0.35 0.09 234 1.402 0.59 -0.38
219 1.665 0.41 -0.43 0.08 235 1.588 0.68 -0.55
221 2.000 0.44 -0.40 0.08 236 1.000 0.48 -0.29
222 2.500 0.44 -0.50 0.08 237 1.196 0.48 -0.32
223 2.000 0.39 -0.35 0.08 238 1.697 0.68 -0.56
224 1.999 0.43 -0.37 0.08 239 2.000 0.54 -0.65
225 3.503 0.76 0.77 0.09 240 2.500 0.51 -0.53
226 3.002 0.58 -0.65 0.08 241 3.003 0.84 -0.75

. . . . 0.09 242 3.504 1.00 -0.90

TABLE 3.4: Measurements of the maximum positive, and max-
imum negative values of the azimuthal component of velocity, for
the experiments with a flat base and a fully blocking thermally in-
sulating barrier.

and

|u] 2 0.03Q cm.sec™ at AT = 10 K.

Using the equation for incompressible flow (1.2}, and making use of the fact
that w € u,v;

10(ru) 1 dv = o 1 fdv (4, 2,t)
r or +r'6¢r~0’:’ RS %dH.T'
This suggests that
1 0.020 0.11Q
QW(AT-‘%K)RS;.?,(&—G)— Py .
and
1 0.030 0.170

Au,[AT:’. 10 K) ~ ;2—1.(5 - G} = .2?,
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FIGURE 3.16: Plots of (a), (c) maximum positive v against €,
(b), (d) maximum negative v against {, for (a), (b) AT =4 K and
(c), (d) AT =10 K, using the velocity results given in Table 3. 4
Also plotted are sohd lines showing (a), (b) v = 0.20 mm.sec™!,

and (c), (d) v =0.3Q mm.sec™™.

Thus equation (3.22) can be written

aC, il $1
Hc(F,a: 0,AT~4 K; Qb,t) s O-UﬁcpﬁTQQd D.llpcpﬂdj‘ T¢d¢‘
12 42
HF,a=0,AT %10 K;dt) w 0. 17p0;2&TEQd 42 17pc,,szd / o

(3.23)

Estimates of the error in H; were obfained by taking the steepest and shal-
lowest slopes of the linear fit used to describe |u| in Figure 3.16; these gave an
error of 15% when AT ~ 4 K and 17% for AT ~ 10 K. Though it should
be noted that since the maximum positive and negative values of v have been
used, equation (3.23) is more likely to be an over estimate of H; than an under
estimate. Values for H;(F,a = 0;¢,1) are plotted in Figure 5.17, along with the
heat advection contributions of the n-circulation, and the total advective heat

transport as measured by the experiments.

3.2.6 Heat advection by eddies.

The heat advection by the eddies is given by equation (3.12). As u/(F;¢, z,1)
could not be measured for @ 2 3.0 rad.sec™", due to the Limitations of the velocity
measurement apparatus, the best that could be done was to estimate the order of
magnitude of H'(7; ¢, z,¢) when eddies were present. Another problem was that
velocity and temperature measurements could not be made simultaneously, so
that it was not possible to correlate the velocity and temperature measurements
for the eddies. Figure 3.7 (c) can be used to estimate the radial velocity shear
with ¢ of an eddy as Aug ~ 0.84 mm.sec™ at = 3.0 rad.sec™ and AT = 10 K.
At the same values of Q and AT temperature measurements gave the difference

between the maximum and minimum values of T', AT as 0.530 K 2. Also as the

2AT' was calculated as follows: AT = T! _ —T!..., where T/, _. was the largest value of T
celculated from the thermocouple ring data, and T, the smallest value, From equation (3.4)
T'(7y2 = 0;¢,t) 8 T(F, 2 = 0;4,1) — ATpg /27 — T, using AT; = ATj.
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FIGURE 3.17: Plots showing the heat transport contributions for
the insulating barrier with the flat base. Heat transport contribu-
tions have been calculated for; the r-circulation, H,, using equation
(3.16); the (-circulation, Hy, using equation (3.23); and Hj, using
equation (3.25). Hyear = H,+H;+Hj. Experimental measurements
of the advective heat transport, H.g, are shown for comparison. (a)
AT =4 K, (b) AT ~ 10 K. The lines serve only as a guide to the
eye.
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eddy in Figure 8.7 (¢) only occupies about one-fifth of the azimuth, 6¢ ~ 27/5.
So that the mazimum amount of heat the eddy could carry (if «' and T" were
suitably correlated) would be

H'(7;¢,2,t) ~ ﬁd,augAde?'sl =17 watts.

Comparison with Figure 3,17 indicates that the eddy was not carrying much
heat, suggesting that ' and T" were not well correlated in this case. However
the calculation does indicate that eddies are quite capable of carrying significant
amounts of heat. The fact that eddies are capable of carrying significant amounts
of heat does suggest that the eddies might be responsible for the increase in Nu
seen in Figure 3.11 (b), which does seem to occur for @ 2 1.6 rad.sec™?, which
is the same as the transition for the onset of the eddies at AT ~ 10 K.

In an attempt to explore the heat advection by eddies a little further, equation
(3.13) suggests that

go [oT

207 1 ) (F: 2=0;9, t)'iz + “1(?‘; é, t)l

u,{‘fi ¢, 2, t) &

where uy(F;d,t) is non-linear in ¢. H'(F;d,2,t) is given by equation (3.12).
Though the mechanism for u;(7; ¢, ) remains unknown, it is possible to write

H'(7;4,2,t) = Hc,l(ﬁ $zt)+ H{("—'i $,2,1)
where
BY(F,2,t) % #C, f ' f - [ O ¢, 2 = 0,6, )dz [T 6, 1) — | s,
e F b Jn N7 ), 84

Substitution from equation (3.4) for T(F; 4, z,t), and integration over ¢ using
the limits given in (3.3) gives



Vi pCoga [ [OT' ATL(F, ¢ = 0;t)d?
By(fidt) = 2 L {Cw[rz—ﬂ 420 =00E

a¢(”‘°“)’ gafd ~a)
+AL( = 0;t) (_3ad“ 3024 3)

AT¢(r, z=10;1)

3d 4 2
+T’(": i ; D;¢’t)a{d— G)} } dg. (3.24)

When the annulus base is flat a(7; ¢) = 0 and the term in square brackets
vanishes, so that if AT, = AT,

gaﬁTd’ f 4ot

Hy(F,a=0;¢,1) ~ —(F, 2 = 0;¢,t)dg. (3.25)

Values of Hy(7,a = 0;¢,1) are plutt.ed along with the other heat transport
contributions in Figure 3.1%. It can be seen that the values of H} are rather small,
and probably form only a tiny part of H'(F;¢,z,t). Equation (3.13) indicates
that Hj is the correction that should be applied to equation (3.14) to allow
for variations in the strength of the n-circulation with ¢ due to non-linearities
in @T/0¢. As H{ is so small, cleatly such corrections are not very important.
Consequently it appears that the important contributions to v/(F; ¢, z,t) are made
by w(F; 4,t), an idea which is supported by Figure 8.7(c) which shows u(F; ¢, z, )
to have a much stronger dependence upon ¢ than on z in the region of the eddy.

3.3 Conclusions.

Section 3.1.3 gives a summary of the experimental results. If seems that the
flow pattern observed may be regarded as a superposition of two circulations (see
section 3.2.1), the n and (- circulations, and eddies at higher rotation rates.
Theory suggested that at r = 7 the r-component of the velocity for the 7-
circulation could be described by equation (3.14). Physically this represents a

3[ 0T [6¢dg was ca,lcnla.ted as follows: f“ OT' [84dd = T'(¢1) — T'(do) = Tjy — T, where
T} is the value of T' at the i** thermocouple.
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balance between the Coriolis force and an azimuthal pressure gradient supported
by the barrier. The pressure drop across the barrier is associated with the tem-
perature drop ATp. Heat advection by the n-circulation is described by equation
(3.16). At values of 2 less than 3.0 rad.sec™® for AT =4 K, and over a larger
range when AT =10 K the heat advection of the 7-circulation gives a good ap-
proximation to the heat advection measured in the experiments. This appears to
correspond to the case when the (-circulation and the eddies transport little heat
so that only the n-circulation contributes significantly to the heat advection by
the fluid. In this range equation (3.16) provides a diagnostic equation which links
the heat advection to ATy through experimental parameters and fluid proper-
ties. Thus there appears to be strong evidence that suggests that the n-circulation
is correctly parameterized by equations (3.14) and (3.16) and described by the
physical mechanism described above.

Further, equations (3.18) - (3.20) provide a set of empirically based diagnostic
equations which link the heat advection to ATy in a similar fashion, over the
whole range of () covered in the experiments.

While the mechanism for the (-circulation has not been revealed, velocity
measurements have allowed its heat advection to be estimated by equation (3.23).
Estimates of heat advection by eddies show that they may play a significant role
in heat advection when present.

Figure 3.17 shows the heat advection contributions of the various processes
described above, While these mechanisms do seem to account for the bulk of the
measured heat advection, there are still regions where the discrepancy is greater
than the error bars. At the very smallest values of () this may be because then
geostrophic balance in the ¢ direction is no longer valid, so that equation (3.13)
is no longer appropriate. At large values of Q) it seems possible that eddies will

play an increasingly important role in heat advection. However a weakness in the

101



theory is that 0T/0¢ has been assumed to be independent of z, and AT, has not
been measured at all, this may also be the cause of the less good agreement at
smaller values of 0.

Despite these problems there is sufficient agreement between the theory and
the measurements to suggest that the mechanisms keeping the heat advection
close to its non-rotating value over the range of Q appear to be as follows.

At low to medium rotation rates heat is advected mainly by the n-circulation,
at a rate which is independent of { {according to equation (3.16)) so long as
ATg o Q. The heat advection by the (-circulation is insignificant as ATy is
rather smaller than AT, ~ AT and because u(7; ¢,t) is small at small 2. At
higher values of @, the (- circulation plays an increasingly important role in
heat advection, but it always transporis less heai than the n-circulation, The
contribution of the 7-circulation begins to decrease once ATy stops increasing
with (0 (see Figure 3.10). Heat advection by the n and (-circulations is unable
to account for the total heat advected by the fluid at all rotation rates according
to the measurements. Because no other processes appear to be present in the
fluid, and because eddies may be able to transport significant amounts of heat
(as section 3.2.6 shows) it is suggested that the remainder of the heat may be
transported by the eddies.

Figure 3.17 (a) shows that no significant heat advection is required of the
eddies until Q ~ 3.0 rad.sec™ at AT ~ 4 K (i.e. when AT} stops increasing
with Q), yet Table 8.1 shows that eddies first appear at @ & 1.2 rad.sec™’.
However eddies cannot transport heat effectively until T'(, z = 0; ¢, ) becomes
significant. Figure 8.9 (a)shows that even at = 1.9 rad.sec™, T" is very small
because the themocouple ring data, T(F, z = 0;¢,t) is still closely linear. The
values of AT" calculated for AT = 4 K plotted in Figure 3.18 show that AT’

increases rapidly between Q = 2.5 rad.sec™ and 3.0 rad.sec™ This
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FIGURE 3.18: Plot of AT" against Q for the results with the full
insulating barrier. For AT’ see §3.2.6. The solid diamonds are the
AT = 4 K results and the crosses, the 10 K results. AT” increases
rapidly around 2.5 rad.sec™.

suggests that although the eddies first appear at much lower rotation rates,
it is appearance of the ‘kinks’ in the themocouple ring data, T/(F, z = 0; ¢, ) (see
Figure 3.9 (a)) which allows them to transport heat effectively. These ‘kinks’
start to appear at about the same values of () as those at which AT stops
increasing with Q.

Bowden (1961) found a relation for the heat transport in an unobstructed
stationary annulus (1.19). Since there is no azimuthal motion in the annulus at
€ = 0 (blocked or unblocked) his result should apply equally to the radial barrier
measurements. The fact that Bowden's results were obtained in a system without

a rigid lid is neglected. Using equation (1.14), Bowden’s result
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may be expressed,
Nu(Q = 0) = (0.203 £ 0.010)Rat. (3.26)

Table 3.5 shows Bowden’s results compared with the measurements of Nu when
) = 0 from Table 5.2. It can be seen that there is excellent agreement with
equation (3.26),

Run| AT | Nu | 0.203Ral® +0.010Ra’* |
No | °C

4U | 4.02 [11.14] 1094 +0.54
7R | 4.05 | 11.10| 1096 +0.54
8M |10.01|13.88| 13.74 +0.68

TABLE 3.5: Values of Nu at Q = 0 for the measurements made with a fully
blocking thermally insulating radial barrier, compared with equation (3.26),

3.4 Further investigations.

The measurements described in this chapter have only been able to partially
investigate the fluid motions and the heat transport measurements seen in the
experiments, A list of further investigations involving each of the processes (the
two circulations and the eddies) is given below. These investigations are explored
in later chapters of this thesis,

The 7-circulation is described by equations (3.14) and (3.16). I these equa-
tions are correct then they predict that if ATy = 0, then u,(F; z,¢) = 0 also, and
the r-circulation is unable to carry any heat. To attempt fo test this, a series
of measurements were made with a thermally conducting barrier, made out of a
thin sheet of copper, which could have the effect of ‘short- circuiting” ATs. The
results of these investigations are reported in Chapter 4.

The mechanism for the (-circulation has not been identified. In Chapter 5 a
possible mechanism for the (-circulation, involving the centrifugal force, is put
forward. In a computer model it is possible to remove the centrifugal force term
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from the dynamical equations whilst keeping all the other terms (including the
Coriolis force term). Thus a comparison of computor simulations of the flow,
with and without the centrifugal force term should provide a critical test of the
role it plays in the (-circulation, assuming that the model is able to simulate the
flow with sufficent accuracy.

The role of eddies in the advection of heat has not been effectively investigated
so far. Sloping bases have previously proved effective in suppressing the forma-
tion of waves in unblocked annulus systems, see Hide (1969), Mason (1972),
(1975) and Hide and Mason (1975). I sloping bases suppress the eddies seen
in the blocked system, then measurements of heat transport without eddies can
be made over the complete range of Q covered in the experiments. These heat
transport measurements could then be compared with those recorded in Figure
3.11 and 8.17 and Table 3.2, and calculated from the n and (-circulations. The
investigations reported in Chapter 6 involve two types of sloping bases, and may
allow the role of the eddies in the heat advection fo be determined.

The heat advection of the eddies could also be calculated from the fluid tem-
perature and velocity fields if simultaneous measurements of temperature and
velocity could be made. These results could then be compared with the heat

advection from the total heat transport measurements.
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