Chapter 1

Introduction and Review.

1.1 Introduction.

The study of rotating differentially heated fluids is of great importance to the un-
derstanding of certain geophysical systems, such as the atmosphere and oceans.
The differentially heated, rotating fluid annulus is a system which shares rota-
tional and thermal forcing with these systems, but which has simple, well defined
boundary conditions. Since rotating annulus experiments can be run in a labo-
ratory, it is also possible to make a great number and variety of measurements
with such a system. While it must be stressed that the rotating annulus is in
no sense an engineering model of any particular geophysical system, it is hoped
that studies involving the rotating annulus will lead to a greater understanding
of the processes taking place in those systems. These studies include both ex-
periments and numerical simulations of the annulus, The relationship between
rotating annulus experiments and the atmospheric sciences is illustrated in Hide
(1977).

The fact that the flows observed in a differentially heated, rotating annulus
bear similarities to larger scale geophysical flows is, in general, unexpected, and
arises because the ratios between certain terms in the dynamical equations are

similar for flows in the annulus and certain geophysical systems. The interested

reader is referred to Holton (1979) (p274), Hide (1988), Read (1988) and White
(1988).

Interest in rotating annulus systems with barriers is motivated by geophysical
systems where zonal flow is obstructed (completely or partially) by topographical
features. Examples include the Atlantic Ocean which is bounded by continents
and the Antarctic Circumpolar Current as well as the effect of large-scale topog-

raphy on atmospheric flows.

1.1.1 Motivation.

The work of Bowden and Eden (1968) showed that the heat transport through
an annulus fully blocked by a radial barrier was far less sensitive to changes in
rotation rate than the heat transport through an unblocked annulus.

Hide has suggested (as reported by Bowden (1961)) that the fluid heat trans-
port became nearly independent of rotation rate,, because the presence of the
barrier allowed an azimuthal pressure gradient to form, so that radial geostrophic
flow could advect heat through the fluid. Bowden and Eden (1968) found that
there was an azimuthal temperature gradient in the fluid, providing evidence to
support this view, but did not investigate it systematically. They also observed
eddies, which appeared in the system at higher 2.

The experiments described in this thesis, have attempted to answer the fol-
lowing important questions, which relate to the work above,

1. Is radial geostrophic flow responsible for making the fluid heat transport
largely independent of 017

2. If radial geostrophic flow cannot maintain the fluid heat transport; or if
it can, but only over a limited range of Q, then what are the processes

responsible for keeping the heat transport nearly constant?
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3. Do the eddies seen at higher Q play any significant role in the heat advection

of the system, and what causes them?

A second investigation explores the effect of incomplete barriers on the flow.
These ‘partial barriers’ blocked the entire radius of the annulus, but only over
a limited height, so that fluid could pass over them. Kester (1966) explored
the transition from unblocked flow, to flow fully blocked by a barrier. Based on
his visual observations, he concluded that there was a relatively sharp transition
which occurred when the barrier had a height of about 0.7 times the depth of
the annulus. However neither Kester, nor Leach (1975) were able to measure any
systematic effect on the heat transport through the fluid due to the height of the
partial barrier. In Kester's case this was because his heat transport measurements
were not sufficiently accurate, while Leach only worked with fairly small barriers,
because he was more interested in other aspects of the flow.

Clearly, heat transport measurements are likely to play an important role
in understanding the nature of the transition from blocked to unblocked flow,
because of the different heat transport characteristics of the unblocked and fully
blocked annulus. These characteristics are described in more detail below.

Chapter 7 of this thesis explores the effect of three partial barriers on the flow.
The velocity, temperature and heat transport measurements described there lead
to a different interpretation of the transition between blocked and unblocked flow
in the differentially heated rotating annulus, than that suggested by Kester. How-
ever Kester’s conclusion is probably correct insofar as it relates to the dependence
of the surface flow pattern on the height of his partial barrier.

1.1.2 Acknowledgements.

This thesis brings together work from a variety of sources; this section attempts
to indicate what they were.
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The apparatus used in the investigations reported in this thesis was provided
by the Meteorological Office, initially at Bracknell, and later at the Hooke Insti-
tute, Oxford University. The author would like to thank the Director General of
the Meteorological Office and the Head of the Hooke Institute for their permission
to use it. This thesis is all the author’s own work except where stated below.

The author wishes to claim credit for the significant role he played in the re-
construction of the apparatus after it was moved to Oxford, and the long period
of time he spent finding and correcting problems caused by the move. He wishes
to thank the Hooke Institute technician, Mr Mike Buckler for his invaluable as-
sistance at this time. Thanks are also due to the head of the Hooke Institute,
Prof. R.Hide, for the support he was able to provide during the course of this
project.

The measurements with the full thermally insulating barrier (chapter 3) were
made by Mr.D.W.Johnson, though the author analysed the data. A significant
number of the heat and temperature measurements reported in §4.1.2 were also
made by Mr.D.W.Johnson, when he was showing the author how to use the
apparatus.

The use of sloping bases to suppress the eddies seen in the full barrier exper-
iments and of a thermally conducting barrier was suggested by R.Hide.

The numerical model used in chapter 5, is that of Hignett et al (1985), mod-
ified by M.J.Bell and A.A.White to include a radial barrier. The model is men-
tioned in §1.3.1 and chapter 5. The model was run by Mr.N.Thomas.

1.1.83 Layout of this thesis.

The rest of chapter 1 summarizes the basic theory used in later parts of this thesis
(§81.2.1, 1.2.2), and certain non-dimensional parameters which are found to be
helpful in the discussion of rotating fluids. This is followed by a review of previous
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related work (§1.3); which is divided into studies involving the unobstructed
annulus (§1.3.1), the fully blocked annulus (§1.3.2) and the annulus with partial
radial barriers (§1.3.3).

Chapter 2 is divided into two sections, the first is a description of the experi-
mental apparatus used (§2.1) and the second is a discussion of the errors involved
in the various types of measurements that were made (§2.2).

Chapters 3,4,6 and 7 deal with the experimental investigations, while chapter
5 covers the investigation with the numerical model mentioned in §1.1.2.

In chapter 3 the results of velocity, temperature and heat transport measure-
ments with a differentially heated, rotating annulus fully blocked by a thermally
insulating barrier are presented. The velocity measurements allow certain sim-
plifications to the velocity field to be made, and consequently the fluid heat
transport to be related to the azimuthal temperature gradient in the fluid. The
results suggest that the fluid heat transport is related to at least two components
of the flow (called the n and (-circulations in chapter 3) and possibly a third
(the eddies seen at higher rotation rates). A mechanism for one of these (the
7-circulation) is proposed in §3.2.3, and tested in §3,2.4.

An attempt to critically test the mechanism for the n-circulation is made
in chapter 4. This was done by trying to modify the azimuthal temperature
gradient in the fluid by using a thermally conducting barrier in place of the
insulating barrier of chapter 3. While the azimuthal temperature gradient proved
remarkably resilient to such a change, the results raise certain questions about
how the fluid manages to support the temperature difference observed across the
barrier.

In chapter 5 a computer simulation of the flow has been used to attempt to
identify the mechanism for the (-circulation mentioned above. A mechanism is
proposed in §5.4.1 and tested in §5.4.2. The model seems to demonstrate that the
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mechanism suggesied in §5.4.1 is inappropriate. §5.4.3 proposes an aliernative
mechanism for the (-circulation and the model is used to provide evidence which
supports it.

Chapter 6 explores the role of the eddies observed in the experiments reported
in chapter 3. Sloping bases have been found to suppress the formation of baro-
clinic waves in an unobstructed annulus flow (see §1.3.1 and chapter 6). If a
sloping base can be used to suppress the eddies observed in the annulus with a
fully blocking thermally insulating barrier, then by comparison with the results
of chapter 3, it may be possible to draw conclusions about the heat transport
properties, and even the nature of the eddies observed in the system. One of
the bases used in chapter 6 did suppress the formation of the eddies over the
whole range of {2 used (at a certain externally applied temperature difference).
The results obtained also provided additional evidence to support the mechanism
advanced for the 7-circulation in §3.2.3.

In chapter 7 a slightly different series of investigations are reported. These
explore the transition from fully blocked to unblocked flow in the differentially
heated rotating annulus, by using barriers of finite azimuthal width with heights of
two-thirds and one-third of the depth of the annulus. The flow in the presence of
the two-thirds barrier appeared to have certain features in common with the fully
blocked system. This result was used to obtain estimates of the heat transport
in the regions above and below the top of the barrier. The results seem to
suggest that the advective heat transport in such a system is, to a fairly good
approximation, given by a linear combination of the heat advection of a fully
blocked and unblocked system based on the height of the barrier.

The conclusions from the combined investigations of chapters 3 to 6, as well
as a summary of the conclusions of chapter 7 are given in chapter 8.

A list of symbols and their definitions is given before chapter 1.
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1.2 Theoretical considerations.
1.2.1 The equation of motion.

Laboratory experiments have centred around work on incompressible, electrically
insulating, fluids. Only Newtonian fluids, where v is independent of i (see below
for the definitions of v and 1) are considered, The equation of motion for such a
fluid in a rotating system is (see e.g. Trition (1988)),

%5+(&'.V)ﬁ+ 20 x E:—%VP+V¢'+vVEﬂZ (1.1)

where s the velocity of a fluid element, {1 is the angular velocity of the system,
p is the mass density of the fluid, p is the pressure, v is the assumed constant
kinematic viscosity of the fluid, and @ the potential of external forces. In cylin-
drical polar coordinates (r,¢,z), V® = 7 - { x (ﬁ X ) + F.., where i=-g2
is the acceleration due to gravity, and Fu represents the acceleration due to any
other external forces.
The equation of conservation of mass for a fluid is
b
ot
As stated above, only incompressible fluids are considered, so that p is constant
following the motion of a fluid particle, and,

Dp _0p ., -
™ +(@V)p=0.

dp | .. 5
+ V.(ptl) = Ep +(2.V)p+pV.0=0.

So the mass continuity equation becomes
Vid=0. (1.2)

H the fluid density is linearly dependent on temperature T, the density of the

incompressible fluid is given by

p=dlt-o(T 1] (13)
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Here 7 is the density of the fluid at the mean fluid temperature T, and « is the
coefficient of thermal expansion for the fluid.

The conductive heat flux vector for a fluid is H,ons = —kVT (W.m™2), where
k is the thermal conductivity of the fluid. The advective heat flux vector is

Hoao = pCyiT (W.m™?), (14)

where C;, is the specific heat capacity of the fluid. So that the equation of con-

servation of heat is
]
G T)+ V.(Bong + Hazo) = 0.

For an incompressible (1.2), Boussinessq fluid (so that in this case p may be
regarded as a constant), this reduces to the equation of heat transfer

% +2.VT = kV’T +Q. (1.5)

Here x = k/pC, is the thermometric conductivity of the fluid and is assumed to
be constant. ) represents the possibility of internal heat sources in the fluid. In
the experiments described in this thesis there are no such sources, hence @ = 0.

Equations (1.1) ~ (1.3) and (1.5) form a set of six equations in six unknowns,
a,p,pT.

To express buoyancy effects explicitly the density may be split into a mean
density, 7 and the assumed small fluctuations from it, p', so that p = 5+ o',
By reference to equation (1.3) it can be seen that o' = —pa(T — T). Hence
pV® = gVd + 'V® and

- !
vé ="ve +Lve,
4 4

So that by assuming that o’ = 0 except when it is coupled with gravity, and that
p = 7 equation (1.1) can be expressed in terms of the Boussinesq approximation

o , 1
E“ +AV)I+ 2 X T=~Vpt VE-oT-T)VE+,V%2  (16)
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A further simplification can be made by assuming that the main contribution
to V@ comes from gravity, i.e. [Q%r| < |g|. If AT is a good estimate of the
typical value of (T'—T), then the magnitude of buoyancy forces can be estimated
as |gaAT),

1.2.2 Scaling the equation of motion.

At this point it is useful to scale equation (1.6) for fluid motions appropriate to
rotating annulus experiments to gain some idea of the physical processes likely
to be important in that system.

To do this the horizontal and vertical components of the motions were scaled
separately and the results used to derive the ‘thermal wind’ equation. The scal-
ing was performed using typical data from the experiments using the annulus
described in chapter 2.

Typical horizontal velocities were seen to be of order U ~ 10~* m.sec™, and
the horizontal length scale used was I ~ (b — a) in the radial direction, and
n(a + b) in the azimuthal direction.  varied between 0 and 5.0 rad.sec™® so
Q ~ 1 rad.sec™ was used. Horizontal pressure variations present a potential
problem as they were not measured, however the results of a computer model by
Hignett et al. (1985)suggest that horizontal deviations in p/j can be estimated as
~ 107 m?.sec™. Steady state motions only are considered. The scaling analyses
for the horizonal components of the equation of motion are given in Table 1.1.

Component from term | Scale of term | Magnitude of term
@V £ 107* m.sec™?
o x 200 10~ m.sec™?
%Vp %f ~ 107 m.sec™?
vV v 1077 m.sec™

TABLE 1.1(b): Scaling analysis for the azimuthal equation of motion,

Thus the primary balance that must occur on surfaces of constant potential, @
is between the Coriolis and pressure gradient forces, this is known as ‘geostrophic
balance’. It holds to an accuracy ~ 10~7/10~* = 0.1% by comparison with the
magnitude of the next largest term,

The experiments did not measure vertical velocities in the annulus, however
typical values for the vertical velocities have been estimated by Jackson and
Hignett (1984) as w ~ 107® m.sec™. The vertical length scale used was d (see
chapter 2), so that V ~ d™ ~ Tm™, Vertical pressure differences were estimated
as Ap ~ pgd, and buoyancy forces as goAT ~ 1072 m.s™2. The scaling analysis
for the vertical equation of motion is given in Table 1.2

Component from term | Scale of term | Magnitude of Term
(@.V)z %’- 1079 m.sec™?
:;Vp ;f 10 m.sec™?
V{: g 10 m.sec™?
o(T -T)Ve gaAT 1072 m.sec™?
vVl v 1078 m.sec™?

TABLE 1.2: Scaling analysis for the vertical equation of motion,

Component from term | Scale of term | Magnitude of term
(V) - 1077 m.sec™?
o x it 20U 107* m.sec™?
1Vp ?ﬁ ~ 1072 m.sec™?
A v 1077 m.sec™?

TABLE 1.1(a): Scaling analysis for the radial equation of motion.
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Soit can be seen that the primary balance occurs between the vertical pressure
gradient forces and gravity, this is known as ‘hydrostatic balance’, and it holds
~1072/10 = 0.1% by comparing it with the next largest term.

The results of the scaling analysis performed above can be used to derive the
so—called thermal wind equation. In cylindrical polar coordinates (r, 4, z), with

velocity, © = (u, v, w), geostrophic balance can be expressed,
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18p

2 - i

szﬁar, and (1.7)
14dp

9y 5 ——o :

Qu rﬁaﬁ’ (1 8}
while hydrostatic balance was:
18p

55 ~ —g+a’g[T-—T). (1’9)

So that by taking 3/ of equations (1.7) and (1.8), and 8/dr or 8/3¢ of (1.9)
p can be eliminated to give;

@ ga 8T

37 ~ ﬁg, and {110)
du ga 8T
5o (1.11)

the two components of the thermal wind equation. Since these have been
derived using geostrophy and hydrostatic balance (which were each expected to
be correct to ~ 0,1% for flow in the interior of the fluid) so the thermal wind
equation may be expected o be accurate to about 0.1% in similar circumstances.

1.2.3 Dimensionless parameters.

It is useful to define certain non-dimensional parameters which are helpful in the
discussion of rotating fluids. Because these parameters are based on the ratios
of various terms in equations (1.1) and (1.5) their magnitude helps to indicate
which physical processes are important in determining the flow in the system.

The Rossby number, Ro is the ratio of the inertial acceleration |(i.V)| ~
U?/L to the Coriolis acceleration |26 X ] ~ 2QU in the system,
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U
Ro= o (1.12)

The Taylor number 7 compares the square of viscous processes |vV?il] ~

vU[L? to the square of the Coriolis acceleration,

4020

v

: (1.13)

T=

The Rayleigh number compares the ratio of buoyancy forces and viscous ef-
fects in equation (1.6) with advective and conductive heat transport processes in
equation (1.5),

gaATL?

VK

where Gr is the Grashof number and Pr the Prandtl number, mentioned below.
The Grashof number is Gr= gaATL®/v?. For large Grashof number, it is the

Ra=

= Gr.Pr, (1.14)

square of the magnitude of the buoyancy force [ga(T — T))|, divided by the square
of the magnitude of the viscous force [v V2], where the typical fluid velocity is
estimated from an inertial (|71, Vi) buoyancy balance. Thus Gr’> 1indicates that
the inertia and buoyancy forces are much more important than the viscous forces
in the fluid. The same interpretation does not apply to small Gr, since then the
balance between inertial and buoyancy forces may not be valid. For further details
see Tritton (1988) pages 172-174. The Ekman number Ek compares viscous and
Coriolis effects,

v
T 20
Another important ratio is given by the Prandil number, Pr which by com-

Ek (1.15)

paring the viscous and thermal diffusivities is assumed to remain a constant for
the fluid.
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Pr= (1.16)

ENES

The Nusselt number is a dimensionless measure of the heat advection through
the fluid, and compares the total heat transport through the fluid with the con-
ductive heat transport, thus

i a0
So that when all the heat transport through the fluid is due to conduction,

Nu=1.

Nu=

1.3 Review of previous work.
1.3.1 The unobstructed annulus.

The first attempts to use experiments to examine flow in rotating fluids were
qualitative in nature. The work of Vettin from 1857-1884, Exner in 1923 and
others is reviewed by Fultz (1951) and Fultz et al. (1959). Thomson (1892) had
also suggested the use of a differentially heated rotating tank to investigate the
motions of the atmosphere. In the light of later discoveries it seems that Vettin
observed axisymmetric flow in his experiments, while Exner saw irregular flow.
Fowlis (1964) reviews this early work in some detail.

A significant contribution was made by Hide (1953) (a), (b), (1958), who
carried out experiments on thermal convection in a rotating cylindrical annulus.
By careful control of the experimental conditions Hide was able to establish the
importance of a non-dimensional parameter, © which he expressed as

___gd  Apl(bta)
“IgE-d?) p 2(b-a)

He found that for an unobstructed annulus two fandamentally different types

©

of flow occurred depending on whether © was greater, or less than
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Oeit = 1.58 £ 0.05. For © > O, the flow was axially symmetric, while for
O < Oui¢ a regular (baroclinic) ! wave flow was observed. By use of equation
(1.3) © can be re-expressed to give,

gaATd

eEmQG(a_g)ﬂ' {1.18)

© is a Rossby number (1.12) where U is based on the linearized thermal wind
equation (1.10). Hide also observed two other types of flow, both associated with
high values of ; irregular flow, and wave vacillation.

Davies (1956) showed that barotropic theory was unable to explain the transi-
tion for the onset of regular waves seen by Hide, and that approximate baroclinic
theory gave results that appeared to be in reasonable agreement, so far as his anal-
ysis went. Robinson (1959) theoretically investigated the axisymmetric regime of
flow and was able to show that flow in the main body of the fluid was governed by
the geostrophic thermal wind, He also collated the experimental resulis of several
authors to produce a qualitative diagram of the regimes of flow as a function of
© and 7 (the earliest such diagram seen by this author).

Heat transport measurements for an unobstructed annulus were made by Bow-
den (1961). He found that for a stationary annulus the heat transport was given
by

Nu(Q = 0) = (0.203 4 0.010)(Pr.Gr) . (1.19)

He also performed a few preliminary experiments with a fully blocking radial
barrier.

Fouwlis and Hide (1965) confirmed the importance of © (which they called I1,)
they also demonstrated that axisymmetric flow occurred for all values of © when

the parameter Il < (1.85 £+ 0.08) x 10°.  Where II; was defined,

"The regular wave flow was not shown to be baroclinic in nature until a later date.
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Iy = 40%b — a)®fv’d. Reference to equation (1.13) shows that II; is identi-
cal to 7 when the characteristic length scale L, is defined so that L* = (b—a)®/d.
This is used to define the Taylor number,

40%(b — a)f
vid

T

(1.20)

Notice that © and 7 are external parameters to the system because they are
defined in terms including quantities external to the fluid (a, b, d, 2, AT rather
than using characteristic length scales generated by fluid motions, for example,
or temperature differences within the fluid. Figure I.1 shows a so-called ‘regime
diagram’ similar to the one Fowlis and Hide (1965) obtained. They were also
able to show that Fady's treatment of baroclinic instability (1949)in an inviscid
fluid was able to predict the approximate value that © iended to in the limit
T = 00, suggesting that the regular wave regime was a manifestation of baroclinic
instability.

Bowden and Eden (1965) examined the fluid velocity and temperature fields
and heat transport in the axisymmetric regime, with and without a rigid lid at
the upper surface. They found that the heat transport was less with an upper
free surface, and that there was a discontinuity in the heat transport between
the axisymmetric and regular wave regimes. They also observed the azimuthal
velocity, v, and found that it was approximately in agreement with the linearized
thermal wind equation, with v = 0 close to mid-depth (with a rigid upper lid).

By considering the flow through the Ekman layers that form on the lid and
base of the annulus, Hide (1967)(a), (b) was able to obtain an expression for
the heat transport in the axisymmetric flow regime, which fell off with rota-
tion rate as approximately /2, This result is also described in Hide and Ma-
son (1975). Further, by calculating the average vertical temperature contrast,
Hide (1967) (b) was able to show that there was very close agreement beiween
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FIGURE 1.2: Regime diagram based on the theory of baroclinic instability
taking into account Ekman-layer friction at rigid upper and lower horizontal sur-
faces. The full lines denote the transition from axisymmetric to non-axisymmetric
flow, or from non-axisymmetric flow of one wavenumber (m) to another wavenum-
ber. B is an internal dimensionless parameter for the fluid, which may be regarded
a8 B = AT;8/(4AT), where AT, is an appropriate vertical temperature differ-
ence in the fluid. From Hide and Mason (1975).
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the transition for the onset of regular waves in the annulus in the experiments
in the limit 7 — oo, and inviscid baroclinic instability theory.

Hide (1969) extended the theory of baroclinic instability to include the effects
of Ekman layer suction. He found that his theory predicted stable flow for 7 <
Teit i addition to the condition on © predicied by the inviscid theory. He
estimated the value of 7,;; and found that it agreed reasonably with experimental
measurements.

Mason (1972), (1975) explored the effect of sloping bases on the baroclinic
wave flows seen in the unobstrucied annulus, following theoretical work by Hide
(1969). He found that ai sufficiently high rotation rates, fluid particles felt the
presence of a sloping base thronghout the depth of the fluid. He was thus able to
use sloping bases to cause fluid particles to move at certain angles to the geope-
tentials in the fluid, with the effect of suppressing or assisting sloping convection
(depending on the sense and steepness of the slope). This work is also discussed
in Hide and Mason (1975). The effect of sloping bases is discussed in chapter 6.

Hide and Mason (1975) reviews the work with the rotating annulus, including
such phenomena as the various types of wave vacillation which are not discussed
here, and includes an example of a regime diagram calculated from Hide'’s (1969)
theory, Figure 1.2. Hide also included the effects of sloping boundaries.

Hide (1977) summarizes much of the theory associated with the rotating annu-
lus work, he also discusses the experimental work, Figure [.3shows heat transport
measurements in various annulus systems from Hide (1977), including those with
a fully blocking radial barrier (see also §1.3.2).

Since then attention has shifted towards detailed examination of several of the
flows observed in the annulus, such as the characteristics of the baroclinic waves,
(Hide, Mason and Plumb (1977)) and using a numerical model of the flow, James,
Jonas and Farnell (1981). Hignett et al. (1985) used a numerical
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FIGURE 1.3: Plot showing the dependence of Nu on { for thermal convection
in a typical differentially heated rotating fluid annulus. Nu=1 corresponds to
purely conductive heat transfer. Key: ‘A’ denotes axisymmetric flow, ‘R’ regular
baroclinic waves, and ‘I’ irregular baroclinic waves. The crosses and solid line
show results from an unobstructed system with horizontal end walls, the circles
show results with sloping end walls which suppressed non-axisymmetric flow (see
Hide and Mason (1975)), and the triangles show results from a system fully
blocked by a rigid barrier. The squares are based on a simple theoretical model
of heat transfer due to axisymmetric flow (Hide (1967)(a), ()). Taken from Hide
(1977).

model to qualitatively simulate various features observed in the experimental
flows, including wavenumber transitions, amplitude vacillation and weak shape
vacillation,

Further reviews and comparisons with processes occuring in atmospheric flows
are given in Hide (1985), (1986), (1988), Read (1988). The numerical simulations
of rotating annulus flows are discussed in Hignett et al. (1985) and White (1988).

A recent theoretical contribution was made by Hide (1989) who suggested
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that the average value of a quantity P over the fluid would be expected to be
zero under certain circumstances, where P = (V x 4).VInp. This would provide
an additional equation to describe the flow.

1.3.2 The annulus with a fully blocking radial barrier.

Rotation greatly reduces heat advection through the fluid in an unblocked annu-
lus. Bowden (1961) (§8.2), reports Hide’s suggestion that a thin radial barrier,
that completely blocked the annulus cavity at one value of ¢, might enable an az-
imuthal temperature and pressure gradient to form, resulting in radial geostrophic
flow. If this was the case, it was to be expected that a full radial barrier might an-
nul, either in part, or completely, the effects of rotation on heat transfer through
the system. However Bowden’s work was inconclusive.

An investigation of the fully blocking radial barrier system was made by Bless
(1965) in his Bachelor’s thesis, under the direction of R.Hide. He made no heat
transport measurements, but did observe three regimes of flow, which were; (i)
flow parallel to the inner and outer cylinders at small rotation rates and tem-
perature contrasts, (i) vortex cells at high  and AT, and (iii) an intermediate
Tegime,

Hide (1968) suggested that a fully blocking radial barrier could influence the
main body of the fluid, so that it would be unaffected by rotation.

Bowden and Eden (1968) made heat transport measurements in a similar
system, and found that the heat transport diminished far less with rotation rate in
the presence of a full radial barrier, than in an unblocked system. They also made
measurements of fluid temperature and found that the full barrier modified the
isotherms, so that the radial temperature gradient was much reduced compared
with an unblocked system. Figure 1.4 shows diagrams of fluid isotherms against
radius in fully blocked systems, They found that the fluid temperature had a
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FIGURE 1.4(a): Experimental measurements of fluid temperature against
height and radius over a range of Q with AT ~ 6 K. Upper results are for an
annulus with a full radial barrier, lower results are for an unblocked annulus. In
both cases a = 3 cm, b =5 cm, Ty = 26°C, T, = 20°C and d = 10 em. In
the fully blocked annulus 8T/r is much smaller than in the unblocked annulus.
From Bowden and Eden (1968).
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FIGURE 1.4(b): Experimental measuremenis of fluid temperature against
height and radius over a range of  with AT ~ 4 K|, for an annulus fully blocked
by a thermally insulating barrier. In most cases §T/8r is small in the interior of
the fluid. Results provided by D.W.Johnson (private communication).

fairly smooth dependence on ¢ at low 2, which became jagged at high 2. They
suggested that the heat transport in the full radial barrier system was due to 2
radial geostrophic flow which was supported by an azimuthal pressure gradient, so
that a radial cell developed, rather like that seen in a stationary annulus. However
without systematic measurements of the azimuthal temperature gradient they
were unable to test this idea.

Experiments with a rotating, differentially heated, rectangular tank were
made by Condie and Griffiths (1989). While such a system is not a fully blocked
rotating annulus, it is topologically similar to the blocked annulus, being singly
connected. They investigated the steady flow and observed a horizontal cyclonic
circulation when the cooled wall was near the axis of rotation. By noticing the
effect of a sloping base on this horizontal circulation they were able to show that
it was caused by centrifugal effects. Their conclusions are discussed in chapter 5.

The numerical model used by Hignett et al. (1985) was modified by M.J.Bell
and A.A White to include a full insulating radial barrier (A.A.White, private
communication). This model is used to explore an aspect of the flow in chapter
5.

1.3.3 The annulus with partial radial barriers.

This review is restricted to work involving rotating flow over obstacles which are
roughly similar to the partial barriers mentioned in §2.1.1 and chapter 7. This
s necessary because while there is a vast literature on topographic effects, there
is comparatively little published material on the sorts of systems investigated in
this thesis.

Of particular relevance is the work of Kester (1966), who, for his Bachelor’s
thesis, investigated annulus flows in the presence of thin barriers, which blocked
the entire radius, but only the lower part of the cavity. By examining the sur-
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face flow pattern, he found a relatively abrupt transition, between blocked and
unblocked flow, when the barrier had a height of 0.7d (d being the depth of the
annulus cavity). Unfortunately, Kester did not calibrate his instruments before
use, so it is perhaps not surprising that his heat transport measurements found
no difference between the heat transports without any barrier, and with a fully
blocking barrier. His work is discussed in chapter 7.

Fultz and Spence (1967) used ridges with an azimuthal width of 60° and a
triangular cross-section, as well as thin barriers. Their barriers had a maximum
height of about 0.4d. By observing the surface flow patterns, they found that the
waves they saw in the system were distorted as they passed over the ridges.

Boyer (1970), (1971)looked at homogeneous rotating flow over a long shallow
ridge for a fluid with Ek< 1. For background rotation in the same sense as the
northern hemisphere he found that down stream of the step, the sireamlines were
shifted to the right.

Leach (1975) studied various types of topography in a differentially heated
rotating annulus. His ‘type C' topography was very similar to one of the partial
barriers described in this thesis, and the results he obtained with it are discussed
elsewhere, as appropriate. In his theoretical work, Leach fitted a topographic
bottom boundary to a baroclinic basic flow. He states that the waves seen with
his topography types were free baroclinic waves. The waves tended to play a
reduced role in the transport of heat in the system, which Leach attributed to
the heat transport of the topographically forced wave. As well as working with
end wall topography he also investigated the flow in an eccentric annulus.

The steady flow of a homogeneous, incompressible fluid in a rotating annulus
with shallow topography (of trapezoidal cross—section) was investigated by Davey
(1978) using a numerical model. The flow was driven by a differentially rotating
lid. He obtained results for three regimes, which depended on the relative sizes of

31

Ek and Ro. A linear viscous regime (Ek*/? 3>Ro), an inviscid regime (Ek'/? <Ro)
and an intermediate regime (Ek'/? ~Ro). Examples of his results are given in
Figure 1.5. He extended his investigation to include steady rotating flow over
topography in a f-plane channel in Davey (1980) and a f-plane annulus in
Davey (1981).

(d)

(0

FIGURE 15: Streamlines showing simulated flow over small trapezoidal
cross-section topography in a rotating annulus. The flow is forced by a differen-
tially rotating lid. (a) Linear viscous flow, Ek!/? = 0.1, Ro— 0. (b) Intermedia?.e
flow, EkY? = 0.1, Ro=0.1. (c) Inviscid flow, Ek/? = 0,01, Ro=0.1. (d) Tnviscid
flow, Ek*/? — 0, Ro=0.1. From Davey (1978).
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