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An investigation has been made of the effect of barriers and sloping bases on
the flow in a differentially heated, rotating fluid annulus.

The investigation of fully blocked systems has indicated the main processes
that keep the fluid heat transport largely independent of rotation rate, up to
5 rad.sec™ . The measurements show that for smaller rotation rates heat is
advected by a radial geostrophic flow, with an azimuthal pressure gradient sup-
ported by the barrier. Associated with the pressure drop across the barrier, is
a temperature drop, which remains even when the barrier is a good thermal
conductor.

At higher rotation rates, two other heat advection processes become increas-
ingly important; a horizontal circulation and eddies. Evidence thai the horizontal
circulation is not due to centrifugal effects is provided by a computer simulation
of the flow. The simulation was also used to show that this circulation may be
associated with radial temperature gradients in the fluid.

By sloping the base of the annulus it proved possible to suppress (to varying
degrees) the formation of the eddies. The resulting heat transport measurements
indicated that heat advection by eddies was significant at larger rotation rates.
The heat transport measurements made with one of the sloping bases suggested
that the eddies may be baroclinic in nature.

A second investigation explored the effect on the flow of barriers with a height
less than the depth of the annulus. Measurements suggested thai flow in the
region blocked by the barriers was similar in character to the flow in the fully
blocked annulus. Flow in the unblocked regions seemed to be more like that
of an unblocked annulus perturbed by small topography. The heat transport
measurements in the partially blocked systems were approximately linked to the
heat transports of fully blocked and unblocked systems in a manner that was
linearly dependent on the ratio of the height of the barrier to the depth of the
annulus,

(319 words)
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