An experimental investigation of heat transfer by large scale motions in rotating fluids.

by

Quintin G. Rayer. B.Sc.(Lond.), A.R.C.S. St.Hugh's College, Oxford.

D.Phil. thesis.

March 12, 1992

Reprinted February 1999

An experimental investigation of heat transfer by large scale motions in rotating fluids.

Quintin G. Rayer. St. Hugh's College, Oxford.

Submitted for the degree of D.Phil. Hilary Term, 1992.

An investigation has been made of the effect of barriers and sloping bases on the flow in a differentially heated, rotating fluid annulus.

The investigation of fully blocked systems has indicated the main processes that keep the fluid heat transport largely independent of rotation rate, up to 5 $rad.sec^{-1}$. The measurements show that for smaller rotation rates heat is advected by a radial geostrophic flow, with an azimuthal pressure gradient supported by the barrier. Associated with the pressure drop across the barrier, is a temperature drop, which remains even when the barrier is a good thermal conductor.

At higher rotation rates, two other heat advection processes become increasingly important; a horizontal circulation and eddies. Evidence that the horizontal circulation is not due to centrifugal effects is provided by a computer simulation of the flow. The simulation was also used to show that this circulation may be associated with radial temperature gradients in the fluid.

By sloping the base of the annulus it proved possible to suppress (to varying degrees) the formation of the eddies. The resulting heat transport measurements indicated that heat advection by eddies was significant at larger rotation rates. The heat transport measurements made with one of the sloping bases suggested that the eddies may be baroclinic in nature.

A second investigation explored the effect on the flow of barriers with a height less than the depth of the annulus. Measurements suggested that flow in the region blocked by the barriers was similar in character to the flow in the fully blocked annulus. Flow in the unblocked regions seemed to be more like that of an unblocked annulus perturbed by small topography. The heat transport measurements in the partially blocked systems were approximately linked to the heat transports of fully blocked and unblocked systems in a manner that was linearly dependent on the ratio of the height of the barrier to the depth of the annulus.

(319 words)

Contents

1	Int	Introduction and Review.					
	1.1	Intro	duction	9			
		1.1.1	Motivation.	1			
		1.1.2	Acknowledgements	1			
		1.1.3	Layout of this thesis	1			
	1.2	Theor	retical considerations	1			
		1.2.1	The equation of motion	1			
		1.2.2	Scaling the equation of motion.	1			
		1.2.3	Dimensionless parameters.	1			
	1.3	Revie	w of previous work	2			
		1.3.1	The unobstructed annulus	2			
		1.3.2	The annulus with a fully blocking radial barrier	2			
		1.3.3	The annulus with partial radial barriers	30			
2	App	paratu	s and errors.	33			
	2.1	Descri	iption of apparatus	33			
		2.1.1	General description of the apparatus	33			
		2.1.2	Velocity measurements	37			
		2.1.3	Procedure for making velocity measurements	43			
		2.1.4	Temperature and heat transport measurements	45			
		2.1.5	Procedure for making temperature measurements	47			
	2.2	Errors	s in the measurements	49			
		2.2.1	Errors in the cavity dimensions	49			
		2.2.2	Errors in rotational control	50			

		2.2.3	Errors in temperature control	5
		2.2.4	Errors in bead velocity measurements.	5
		2.2.5	Errors in fitted velocity field.	5
		2.2.6	Errors in heat transport measurements	5
		2.2.7	Errors in thermocouple ring measurements	50
		2.2.8	Errors in derived quantities	200
3	Ex	perime	ents with an insulating barrier and a flat base.	6
	3.1	Exper	rimental results	6
		3.1.1	Velocity measurements	6
		3.1.2	Heat and temperature measurements	7
		3.1.3	Summary of results.	8
	3.2	Discus	ssion of results	8
		3.2.1	Simplified interpretation of flow pattern	8
		3.2.2	Heat transport considerations	82
		3.2.3	Suggested mechanism for the η -circulation	86
		3.2.4	Testing the theory for the η -circulation	88
		3.2.5	Heat advection by the ζ -circulation	92
		3.2.6	Heat advection by eddies.	97
	3.3	Concl	usions	10
	3.4	Furth	er investigations.	10
4	Exp	erime	nts with a conducting barrier and a flat base.	10
	4.1	Exper	imental results	10
		4.1.1	Velocity measurements	10
		4.1.2	Heat and temperature measurements	11
		4.1.3	Summary of results.	11
	4.2	Discus	sion of results.	12
		121	The neirculation	10

		4.2.2	Heat advection by other processes	131
	4.3	Concl	usions	134
5	Cor	nputer	r model results.	136
	5.1	The c	omputer model	136
	5.2	Comp	parison of model results with experimental data	137
	5.3	Using	the model to scale the dynamical equations	144
	5.4	The ζ	-circulation	149
		5.4.1	Proposed mechanism for the ζ -circulation	149
		5.4.2	Testing the mechanism for the ζ -circulation	152
		5.4.3	The effect of reversing $\Delta T.$	154
	5.5	Conch	usions	155
6	Exp	erimer	nts with annuli of variable depth.	159
	6.1	Tempe	erature measurements	162
		6.1.1	System with variable depth, $d(\phi)$	162
		6.1.2	System with variable depth, $d(r, \phi)$	169
		6.1.3	Summary of results.	169
	6.2	Discus	sion of results.	175
		6.2.1	Heat transport by the $\eta\text{-circulation.}$	176
		6.2.2	Heat transport by the ζ -circulation	180
		6.2.3	Heat transport by eddies.	183
	6.3	Conch	asions	186
	6.4	Furthe	er investigations.	188
7	Exp	erime	nts with partial barriers.	189
	7.1	Exper	imental results	191
		7.1.1	Velocity measurements with a $\frac{2}{3}d$, 30° wide barrier	191
		7.1.2	Temperature measurements with a $\frac{2}{3}d,30^{\circ}$ wide barrier	199
		7.1.3	Velocity measurements with a $\frac{2}{3}d$, 60° wide barrier	204

		7.1.4	Temperature measurements with a $\frac{1}{3}d$, 30° wide barrier	21
		7.1.5	Summary of results	21
	7.2	Discuss	sion of results	22
		7.2.1	Simplified flow pattern	22
		7.2.2	Heat advection by the η -circulation	22
		7.2.3	Heat advection above the barrier	22
		7.2.4	Fluid velocities above the barrier	230
	7.3	Conclu	sions	232
	7.4	Further	r investigations	235
8	Con	nclusio	ns.	23'
	8.1	Full ba	arrier experiments	23'
		8.1.1	The η -circulation	23'
		8.1.2	The ζ-circulation	23
		8.1.3	The eddies	24
		8.1.4	Summary	24
		8.1.5	Other results.	243
	8.2	Partial	l barrier experiments	24
	8.3	Geoph	ysical implications	24

LIST OF F	IGURES.	
Figure	Description	Page
1.1	Experimental regime diagram.	24
1.2	Theoretical regime diagram.	24
1.3	Nu vs Ω for various annulus systems.	26
1.4	Fluid isotherms in (r, z) plane, fully blocked annulus.	28-29
1.5	Streamlines over plateau topography in an annulus.	32
2.1	Schematic diagram of annulus.	34
2.2	Diagram showing partial barriers and sloping bases.	38
2.3	Cross-section of velocity measurement annulus.	39
2.4	Diagram of VVAS.	40
2.5	RMS velocity deviations vs data collection time.	39
3.1	Regime diagram (velocity), insulating barrier.	64
3.2 - 3.4	Horizontal velocity data, insulating barrier.	65-67
3.5, 3.6	u, v contours in (r, z) plane, insulating barrier.	69-70
3.7	u contours in (ϕ, z) plane, insulating barrier.	71
3.8	Regime diagram (temperature), insulating barrier.	74
3.9	Thermocouple ring data, insulating barrier.	75
3.10	ΔT_B vs Ω , insulating barrier.	76
3.11	$Nu(\Omega)/Nu(0)$ vs Ω , insulating barrier.	77
3.12	Diagram illustrating η and ζ -circulations.	81
3.13	A_*^{-1} vs Ω , insulating barrier.	89
3.14	Y vs ΔT_B , insulating barrier.	91
3.15 - 3.16	u, v vs Ω , insulating barrier.	93,96
3.17	Heat advection vs Ω , insulating barrier.	98
3.18	$\Delta T'$ vs Ω , insulating barrier.	103
4.1	Regime diagram (velocity), conducting barrier.	107
4.2 - 4.4	Horizontal velocity data, conducting barrier.	109-111
4.5, 4.6	u, v contours in (r, z) plane, conducting barrier.	112,113
4.7	u contours in (ϕ, z) plane, conducting barrier.	114
4.8	Regime diagram (temperature), conducting barrier.	117
4.9	Thermocouple ring data, conducting barrier.	119
4.10	ΔT_B vs Ω , conducting barrier.	120
4.11	$Nu(\Omega)/Nu(0)$ vs Ω , conducting barrier.	121
4.12	A_*^{-1} vs Ω , conducting barrier.	128
4.13	Y vs ΔT_B , conducting barrier.	129
4.14 - 4.15	u, v vs Ω , conducting barrier.	131-132
4.16	Heat advection vs Ω , conducting barrier.	133
5.1	Horizontal velocity field, numerical simulation.	138
5.2	Horizontal velocity field experimental measurements	140

Figure	Description	Page
5.3	u, v, T contours in (r, z) plane, simulation.	141
5.4	Simulated thermocouple ring data.	142
5.5	Streamlines and T contours in (r, z) plane, simulation.	143
5.6-5.8		145-147
5.9, 5.1		153,154
5.11-5.		156-158
6.1	Regime diagram (temperature), system with $d(\phi)$.	163
6.2	Thermocouple ring data, system with $d(\phi)$.	164
6.3	ΔT_B vs Ω , system with $d(\phi)$.	165
6.4	$Nu(\Omega)/Nu(0)$ vs Ω , system with $d(\phi)$.	166
6.5	Regime diagram (temperature), system with $d(r, \phi)$.	170
6.6	Thermocouple ring data, system with $d(r, \phi)$.	171
6.7	ΔT_B vs Ω , system with $d(r, \phi)$.	165
6.8	$Nu(\Omega)/Nu(0)$ vs Ω , system with $d(r, \phi)$.	172
6.9	A_{*}^{-1} vs Ω , systems with $d(\phi)$ and $d(r,\phi)$.	179
6.10, 6.	그렇게 보고 있다면 하다 하다 하다 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이	181,182
6.12, 6.		184,185
7.1	Regime diagram (velocity), 2/3, 30° partial barrier.	192
7.2-7.4		194-196
7.5, 7.6		198,199
7.7	v contours in (ϕ, z) plane, 2/3, 30° partial barrier.	200
7.8	Regime diagram (temperature), 2/3, 30° partial barrier.	202
7.9	Thermocouple ring data, 2/3, 30° partial barrier.	203
7.10	$\Delta T_B \text{ vs } \Omega, 2/3, 30^{\circ} \text{ partial barrier.}$	205
7.11	$Nu(\Omega)/Nu(0)$ vs Ω , 2/3, 30° partial barrier.	206
7.12	Regime diagram (velocity), 2/3, 60° partial barrier.	211
7.13	Regime diagram (temperature), 1/3, 30° partial barrier.	214
7.14	Thermocouple ring data, 1/3, 30° partial barrier.	215
7.15	$\Delta T_B \text{ vs } \Omega, 1/3, 30^{\circ} \text{ partial barrier.}$	216
7.16	$Nu(\Omega)/Nu(0)$ vs Ω , 1/3, 30° partial barrier.	218
7.17	Illustration of simplified flow for partial barriers.	223
7.18	A_*^{-1} vs Ω , 2/3, 30° partial barrier.	225
7.19	Estimated Nu for flow above partial barriers.	228
7.20	v vs Ω above 2/3, 30° partial barrier.	225
8.1	Nu.Ra ^{-1/4} vs Ω for insulating and conducting barriers.	246
	TABLES.	
Table	Description Page	
1.1	Scaling analysis for horizontal equation of motion. 17-18	
1.2	Scaling analysis for vertical equation of motion. 18	

rements, 140

Table	Description	Page
2.1	Range of experimental parameters.	35
2.2	Standard errors in the measurements.	60-61
3.1	Velocity measurements, insulating barrier.	72
3.2	Temperature & heat transport data, insulating barrier.	78-79
3.3, 3.4	u, v vs Ω measurements, insulating barrier.	92,95
3.5	$Nu(\Omega = 0)$ compared with equation (3.26).	104
4.1	Velocity measurements, conducting barrier.	115-116
4.2	Temperature & heat transport data, conducting barrier.	122-123
4.3	u, v vs Ω measurements, conducting barrier.	130
4.4	$Nu(\Omega = 0)$ compared with equation (3.26).	135
5.1	Scaling analysis for equation (5.2).	151
5.2	Definition of terms used in Figures 5.6-5.8.	148
6.1, 6.2	Temperature & heat transport data, system with $d(\phi)$.	167,168
6.3, 6.4	Temperature & heat transport data, system with $d(r, \phi)$.	173,174
6.5	Coefficient values for the sloping bases.	178
7.1	Velocity measurements, 2/3, 30° partial barrier.	201
7.2, 7.3	Temperature & heat transport data, 2/3, 30° partial barrier.	207-210
7.4	Velocity measurements, 2/3, 60° partial barrier.	212
7.5	Temperature & heat transport data, 1/3, 30° partial barrier.	219-220
7.6	$v(z)$ vs Ω data, 2/3, 30° partial barrier.	232
	PRINCIPAL QUANTITIES USED AND THEIR DEFINITION	NS.
Quantity		
A_*	Defined by equation (3.17), $A_*^{-1} \approx H_{adv}/H_{\eta}$.	
a, b	Inner and outer radii of annulus, see Table 2.1.	
$a(\bar{r};\phi)$	Modification to z_0 due to sloping bases, see equation (3.3)).
C_p	Specific heat capacity of fluid, see Table 2.1.	
d, (d)	Depth (or mean depth) of annulus cavity, see Table 2.1.	
E	Subscript 'E' generally denotes a standard error (§2.2.8).	
Ek	Ekman number, see equation (1.15).	
g	Acceleration due to gravity, 980 cm.sec ⁻² .	
Gr	Grashof number, see below equation (1.14) .	
H_{adv}, \vec{H}_{ad}	The state of the s	
H_{cond}, \vec{H}_{co}		
$H_{2/3}, H_{1/3}$	Heat advection above 2/3, or 1/3 partial barrier.	
H_{η}, H_{ζ}	Heat advection by the η or ζ -circulation.	

Quantity	Definition
h	Height of partial barrier.
k	Thermal conductivity of fluid, see Table 2.1.
Nu	Nusselt number, see equation (1.17).
p	Pressure in fluid.
Pr	Prandtl number, see equation (1.16).
(r,ϕ,z)	Coordinates of point in cylindrical polar coordinates.
Ra	Rayleigh number, see equation (1.14).
Ro	Rossby number, see equation (1.12).
$\mathcal{S}, d\mathcal{S}$	Surface, or vector element of surface.
slope	Superscript 'slope' denotes the correction to allow for a
	sloping base.
T, \bar{T} T'	Temperature, or mean temperature of fluid, see Table 2.1.
T'	Deviation of T from linearity, see equation (3.4) .
t	Time.
\vec{u}	Fluid velocity with components (u, v, w) .
u_{η}	Radial velocity of η -circulation.
u_{ζ}	Radial velocity of ζ -circulation.
u'	Radial velocity departures from $u_{\eta} + u_{\zeta}$.
Y	$\approx \Delta T_B$, see equation (3.20).
z_0, z_1	Integration limits over z , see equation (3.3).
α	Expansion coefficient of fluid, see Table 2.1.
ΔT	Externally applied temperature difference, see Table 2.1.
$\Delta T'$	Range of departures from linearity of $T'(\bar{r}, z = 0; \phi, t)$.
ΔT_B	Temperature drop across barrier.
$\Delta T_{\tau}, \Delta T_{\phi}, \Delta T_{z}$	Typical temperature differences across body of fluid.
Δu_{ϕ}	Shear in u over ϕ associated with ζ -circulation.
€	Half angular thickness of barrier.
ζ	-circulation, see §3.2.1.
η	-circulation, see §3.2.1.
Θ	'Theta', see equation (1.18).
κ	Thermometric conductivity of fluid = $k/\rho C_p$.
ν _	Kinematic viscosity of fluid, see Table 2.1.
$\rho, \bar{\rho}$	Fluid density, mean fluid density, see Table 2.1.
σ	Subscript '\sigma' denotes a fractional error in a quantity (\sigma 2.2.8).
T T	Taylor number, see equation (1.13).
Φ 1 1	Potential of external forces.
ϕ_0, ϕ_1	Integration limits over ϕ , see equation (3.3).
$\vec{\Omega}$	Rotation vector for annulus, see Table 2.1.